Returns x + y element-wise.
tf.raw_ops.Add(
x, y, name=None
)
Example usages below.
Add a scalar and a list:
x = [1, 2, 3, 4, 5]
y = 1
tf.add(x, y)
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([2, 3, 4, 5, 6], dtype=int32)>
Note that binary +
operator can be used instead:
x = tf.convert_to_tensor([1, 2, 3, 4, 5])
y = tf.convert_to_tensor(1)
x + y
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([2, 3, 4, 5, 6], dtype=int32)>
Add a tensor and a list of same shape:
x = [1, 2, 3, 4, 5]
y = tf.constant([1, 2, 3, 4, 5])
tf.add(x, y)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 2, 4, 6, 8, 10], dtype=int32)>
For example,
x = [2**7 + 1, 2**7 + 2]
y = tf.constant([1, 2], dtype=tf.int8)
tf.add(x, y)
<tf.Tensor: shape=(2,), dtype=int8, numpy=array([-126, -124], dtype=int8)>
When adding two input values of different shapes, math.add
follows the general
broadcasting rules
. The two input array shapes are compared element-wise. Starting with the
trailing dimensions, the two dimensions either have to be equal or one of them
needs to be 1
.
For example,
x = np.ones(6).reshape(1, 2, 1, 3)
y = np.ones(6).reshape(2, 1, 3, 1)
tf.add(x, y).shape.as_list()
[2, 2, 3, 3]
Another example with two arrays of different dimension.
x = np.ones([1, 2, 1, 4])
y = np.ones([3, 4])
tf.add(x, y).shape.as_list()
[1, 2, 3, 4]
The reduction version of this elementwise operation is tf.math.reduce_sum
Args | |
---|---|
x
|
A Tensor . Must be one of the following types: bfloat16 , half , float32 , float64 , uint8 , int8 , int16 , int32 , int64 , complex64 , complex128 , string .
|
y
|
A Tensor . Must have the same type as x .
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as x .
|