TensorFlow 1 version | View source on GitHub |
Optimizer that implements the NAdam algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Nadam(
learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07,
name='Nadam', **kwargs
)
Much like Adam is essentially RMSprop with momentum, Nadam is Adam with Nesterov momentum.
Args | |
---|---|
learning_rate
|
A Tensor or a floating point value. The learning rate. |
beta_1
|
A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. |
beta_2
|
A float value or a constant float tensor. The exponential decay rate for the exponentially weighted infinity norm. |
epsilon
|
A small constant for numerical stability. |
name
|
Optional name for the operations created when applying gradients.
Defaults to "Nadam" .
|
**kwargs
|
Keyword arguments. Allowed to be one of
"clipnorm" or "clipvalue" .
"clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips
gradients by value.
|
Usage Example:
opt = tf.keras.optimizers.Nadam(learning_rate=0.2)
var1 = tf.Variable(10.0)
loss = lambda: (var1 ** 2) / 2.0
step_count = opt.minimize(loss, [var1]).numpy()
"{:.1f}".format(var1.numpy())
9.8
Reference:
Raises | |
---|---|
ValueError
|
in case of any invalid argument. |