TensorFlow 1 version | View source on GitHub |
Loads the CIFAR10 dataset.
tf.keras.datasets.cifar10.load_data()
This is a dataset of 50,000 32x32 color training images and 10,000 test images, labeled over 10 categories. See more info at the CIFAR homepage.
The classes are:
Label | Description |
---|---|
0 | airplane |
1 | automobile |
2 | bird |
3 | cat |
4 | deer |
5 | dog |
6 | frog |
7 | horse |
8 | ship |
9 | truck |
Returns | |
---|---|
Tuple of NumPy arrays: (x_train, y_train), (x_test, y_test) .
|
x_train: uint8 NumPy array of grayscale image data with shapes
(50000, 32, 32, 3)
, containing the training data. Pixel values range
from 0 to 255.
y_train: uint8 NumPy array of labels (integers in range 0-9)
with shape (50000, 1)
for the training data.
x_test: uint8 NumPy array of grayscale image data with shapes (10000, 32, 32, 3), containing the test data. Pixel values range from 0 to 255.
y_test: uint8 NumPy array of labels (integers in range 0-9)
with shape (10000, 1)
for the test data.
Example:
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
assert x_train.shape == (50000, 32, 32, 3)
assert x_test.shape == (10000, 32, 32, 3)
assert y_train.shape == (50000, 1)
assert y_test.shape == (10000, 1)