Applies the Gaussian error linear unit (GELU) activation function.
tf.keras.activations.gelu(
x, approximate=False
)
Gaussian error linear unit (GELU) computes
x * P(X <= x)
, where P(X) ~ N(0, 1)
.
The (GELU) nonlinearity weights inputs by their value, rather than gates
inputs by their sign as in ReLU.
For example:
x = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype=tf.float32)
y = tf.keras.activations.gelu(x)
y.numpy()
array([-0.00404951, -0.15865529, 0. , 0.8413447 , 2.9959507 ],
dtype=float32)
y = tf.keras.activations.gelu(x, approximate=True)
y.numpy()
array([-0.00363752, -0.15880796, 0. , 0.841192 , 2.9963627 ],
dtype=float32)
Args |
x
|
Input tensor.
|
approximate
|
A bool , whether to enable approximation.
|
Returns |
The gaussian error linear activation:
0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))
if approximate is True or
x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2))) ,
where P(X) ~ N(0, 1) ,
if approximate is False .
|
Reference: