tf.distribute.OneDeviceStrategy

A distribution strategy for running on a single device.

Inherits From: Strategy

Using this strategy will place any variables created in its scope on the specified device. Input distributed through this strategy will be prefetched to the specified device. Moreover, any functions called via strategy.run will also be placed on the specified device as well.

Typical usage of this strategy could be testing your code with the tf.distribute.Strategy API before switching to other strategies which actually distribute to multiple devices/machines.

For example:

strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")

with strategy.scope():
  v = tf.Variable(1.0)
  print(v.device)  # /job:localhost/replica:0/task:0/device:GPU:0

def step_fn(x):
  return x * 2

result = 0
for i in range(10):
  result += strategy.run(step_fn, args=(i,))
print(result)  # 90

device Device string identifier for the device on which the variables should be placed. See class docs for more details on how the device is used. Examples: "/cpu:0", "/gpu:0", "/device:CPU:0", "/device:GPU:0"

cluster_resolver Returns the cluster resolver associated with this strategy.

In general, when using a multi-worker tf.distribute strategy such as tf.distribute.experimental.MultiWorkerMirroredStrategy or tf.distribute.TPUStrategy(), there is a tf.distribute.cluster_resolver.ClusterResolver associated with the strategy used, and such an instance is returned by this property.

Strategies that intend to have an associated tf.distribute.cluster_resolver.ClusterResolver must set the relevant attribute, or override this property; otherwise, None is returned by default. Those strategies should also provide information regarding what is returned by this property.

Single-worker strategies usually do not have a tf.distribute.cluster_resolver.ClusterResolver, and in those cases this property will return None.

The tf.distribute.cluster_resolver.ClusterResolver may be useful when the user needs to access information such as the cluster spec, task type or task id. For example,


os.environ['TF_CONFIG'] = json.dumps({
'cluster': {
'worker': ["localhost:12345", "localhost:23456"],
'ps': ["localhost:34567"]
},
'task': {'type': 'worker', 'index': 0}
})

# This implicitly uses TF_CONFIG for the cluster and current task info.
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()

...

if strategy.cluster_resolver.task_type == 'worker':
# Perform something that's only applicable on workers. Since we set this
# as a worker above, this block will run on this particular instance.
elif strategy.cluster_resolver.task_type == 'ps':
# Perform something that's only applicable on parameter servers. Since we
# set this as a worker above, this block will not run on this particular
# instance.

For more information, please see tf.distribute.cluster_resolver.ClusterResolver's API docstring.

extended tf.distribute.StrategyExtended with additional methods.
num_replicas_in_sync Returns number of replicas over which gradients are aggregated.

Methods

distribute_datasets_from_function

View source

Distributes tf.data.Dataset instances created by calls to dataset_fn.

dataset_fn will be called once for each worker in the strategy. In this case, we only have one worker and one device so dataset_fn is called once.

The dataset_fn should take an tf.distribute.InputContext instance where information about batching and input replication can be accessed:

def dataset_fn(input_context):
  batch_size = input_context.get_per_replica_batch_size(global_batch_size)
  d = tf.data.Dataset.from_tensors([[1.]]).repeat().batch(batch_size)
  return d.shard(
      input_context.num_input_pipelines, input_context.input_pipeline_id)

inputs = strategy.distribute_datasets_from_function(dataset_fn)

for batch in inputs:
  replica_results = strategy.run(replica_fn, args=(batch,))

Args
dataset_fn A function taking a tf.distribute.InputContext instance and returning a tf.data.Dataset.
options tf.distribute.InputOptions used to control options on how this dataset is distributed.

Returns
A "distributed Dataset", which the caller can iterate over like regular datasets.

experimental_distribute_dataset

View source

Distributes a tf.data.Dataset instance provided via dataset.

In this case, there is only one device, so this is only a thin wrapper around the input dataset. It will, however, prefetch the input data to the specified device. The returned distributed dataset can be iterated over similar to how regular datasets can.

Example:

strategy = tf.distribute.OneDeviceStrategy()
dataset = tf.data.Dataset.range(10).batch(2)
dist_dataset = strategy.experimental_distribute_dataset(dataset)
for x in dist_dataset:
  print(x)  # [0, 1], [2, 3],...

Args: dataset: tf.data.Dataset to be prefetched to device. options: tf.distribute.InputOptions used to control options on how this dataset is distributed. Returns: A "distributed Dataset" that the caller can iterate over.

experimental_distribute_values_from_function

View source

Generates tf.distribute.DistributedValues from value_fn.

This function is to generate tf.distribute.DistributedValues to pass into run, reduce, or other methods that take distributed values when not using datasets.

Args
value_fn The function to run to generate values. It is called for each replica with tf.distribute.ValueContext as the sole argument. It must return a Tensor or a type that can be converted to a Tensor.

Returns
A tf.distribute.DistributedValues containing a value for each replica.

Example usage:

  1. Return constant value per replica:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])
def value_fn(ctx):
  return tf.constant(1.)
distributed_values = (
     strategy.experimental_distribute_values_from_function(
       value_fn))
local_result = strategy.experimental_local_results(distributed_values)
local_result
(<tf.Tensor: shape=(), dtype=float32, numpy=1.0>,
 <tf.Tensor: shape=(), dtype=float32, numpy=1.0>)
  1. Distribute values in array based on replica_id:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])
array_value = np.array([3., 2., 1.])
def value_fn(ctx):
  return array_value[ctx.replica_id_in_sync_group]
distributed_values = (
     strategy.experimental_distribute_values_from_function(
       value_fn))
local_result = strategy.experimental_local_results(distributed_values)
local_result
(3.0, 2.0)
  1. Specify values using num_replicas_in_sync:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])
def value_fn(ctx):
  return ctx.num_replicas_in_sync
distributed_values = (
     strategy.experimental_distribute_values_from_function(
       value_fn))
local_result = strategy.experimental_local_results(distributed_values)
local_result
(2, 2)
  1. Place values on devices and distribute:
strategy = tf.distribute.TPUStrategy()
worker_devices = strategy.extended.worker_devices
multiple_values = []
for i in range(strategy.num_replicas_in_sync):
  with tf.device(worker_devices[i]):
    multiple_values.append(tf.constant(1.0))

def value_fn(ctx):
  return multiple_values[ctx.replica_id_in_sync_group]

distributed_values = strategy.
  experimental_distribute_values_from_function(
  value_fn)

experimental_local_results

View source

Returns the list of all local per-replica values contained in value.

In OneDeviceStrategy, the value is always expected to be a single value, so the result is just the value in a tuple.

Args
value A value returned by experimental_run(), run(), extended.call_for_each_replica(), or a variable created in scope.

Returns
A tuple of values contained in value. If value represents a single value, this returns (value,).

gather

View source

Gather value across replicas along axis to the current device.

Given a tf.distribute.DistributedValues or tf.Tensor-like object value, this API gathers and concatenates value across replicas along the axis-th dimension. The result is copied to the "current" device, which would typically be the CPU of the worker on which the program is running. For tf.distribute.TPUStrategy, it is the first TPU host. For multi-client tf.distribute.MultiWorkerMirroredStrategy, this is the CPU of each worker.

This API can only be called in the cross-replica context. For a counterpart in the replica context, see tf.distribute.ReplicaContext.all_gather.

strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])
# A DistributedValues with component tensor of shape (2, 1) on each replica
distributed_values = strategy.experimental_distribute_values_from_function(lambda _: tf.identity(tf.constant([[1], [2]])))
@tf.function
def run():
  return strategy.gather(distributed_values, axis=0)
run()
<tf.Tensor: shape=(4, 1), dtype=int32, numpy=
array([[1],
       [2],
       [1],
       [2]], dtype=int32)>

Consider the following example for more combinations:

strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1", "GPU:2", "GPU:3"])
single_tensor = tf.reshape(tf.range(6), shape=(1,2,3))
distributed_values = strategy.experimental_distribute_values_from_function(lambda _: tf.identity(single_tensor))
@tf.function
def run(axis):
  return strategy.gather(distributed_values, axis=axis)
axis=0
run(axis)
<tf.Tensor: shape=(4, 2, 3), dtype=int32, numpy=
array([[[0, 1, 2],
        [3, 4, 5]],
       [[0, 1, 2],
        [3, 4, 5]],
       [[0, 1, 2],
        [3, 4, 5]],
       [[0, 1, 2],
        [3, 4, 5]]], dtype=int32)>
axis=1
run(axis)
<tf.Tensor: shape=(1, 8, 3), dtype=int32, numpy=
array([[[0, 1, 2],
        [3, 4, 5],
        [0, 1, 2],
        [3, 4, 5],
        [0, 1, 2],
        [3, 4, 5],
        [0, 1, 2],
        [3, 4, 5]]], dtype=int32)>
axis=2
run(axis)
<tf.Tensor: shape=(1, 2, 12), dtype=int32, numpy=
array([[[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2],
        [3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5]]], dtype=int32)>

Args
value a tf.distribute.DistributedValues instance, e.g. returned by Strategy.run, to be combined into a single tensor. It can also be a regular tensor when used with tf.distribute.OneDeviceStrategy or the default strategy. The tensors that constitute the DistributedValues can only be dense tensors with non-zero rank, NOT a tf.IndexedSlices.
axis 0-D int32 Tensor. Dimension along which to gather. Must be in the range [0, rank(value)).

Returns
A Tensor that's the concatenation of value across replicas along axis dimension.

reduce

View source

Reduce value across replicas.

In OneDeviceStrategy, there is only one replica, so if axis=None, value is simply returned. If axis is specified as something other than None, such as axis=0, value is reduced along that axis and returned.

Example:

t = tf.range(10)

result = strategy.reduce(tf.distribute.ReduceOp.SUM, t, axis=None).numpy()
# result: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

result = strategy.reduce(tf.distribute.ReduceOp.SUM, t, axis=0).numpy()
# result: 45

Args
reduce_op A tf.distribute.ReduceOp value specifying how values should be combined.
value A "per replica" value, e.g. returned by run to be combined into a single tensor.
axis Specifies the dimension to reduce along within each replica's tensor. Should typically be set to the batch dimension, or None to only reduce across replicas (e.g. if the tensor has no batch dimension).

Returns
A Tensor.

run

View source

Run fn on each replica, with the given arguments.

In OneDeviceStrategy, fn is simply called within a device scope for the given device, with the provided arguments.

Args
fn The function to run. The output must be a tf.nest of Tensors.
args (Optional) Positional arguments to fn.
kwargs (Optional) Keyword arguments to fn.
options (Optional) An instance of tf.distribute.RunOptions specifying the options to run fn.

Returns
Return value from running fn.

scope

View source

Returns a context manager selecting this Strategy as current.

Inside a with strategy.scope(): code block, this thread will use a variable creator set by strategy, and will enter its "cross-replica context".

In OneDeviceStrategy, all variables created inside strategy.scope() will be on device specified at strategy construction time. See example in the docs for this class.

Returns
A context manager to use for creating variables with this strategy.