View source on GitHub |
Computes tf.sparse.add
of elements across dimensions of a SparseTensor. (deprecated arguments) (deprecated arguments)
tf.compat.v1.sparse_reduce_sum(
sp_input, axis=None, keepdims=None, reduction_axes=None, keep_dims=None
)
This is the reduction operation for the elementwise tf.sparse.add
op.
This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_sum()
. In particular, this Op also returns a dense Tensor
instead of a sparse one.
Reduces sp_input
along the dimensions given in reduction_axes
. Unless
keepdims
is true, the rank of the tensor is reduced by 1 for each entry in
reduction_axes
. If keepdims
is true, the reduced dimensions are retained
with length 1.
If reduction_axes
has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
similar to the indexing rules in Python.
For example:
'x' represents [[1, ?, 1]
[?, 1, ?]]
where ? is implicitly-zero.
x = tf.sparse.SparseTensor([[0, 0], [0, 2], [1, 1]], [1, 1, 1], [2, 3])
tf.sparse.reduce_sum(x)
<tf.Tensor: shape=(), dtype=int32, numpy=3>
tf.sparse.reduce_sum(x, 0)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 1, 1], dtype=int32)>
tf.sparse.reduce_sum(x, 1) # Can also use -1 as the axis
<tf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 1], dtype=int32)>
tf.sparse.reduce_sum(x, 1, keepdims=True)
<tf.Tensor: shape=(2, 1), dtype=int32, numpy=
array([[2],
[1]], dtype=int32)>
tf.sparse.reduce_sum(x, [0, 1])
<tf.Tensor: shape=(), dtype=int32, numpy=3>
Args | |
---|---|
sp_input
|
The SparseTensor to reduce. Should have numeric type. |
axis
|
The dimensions to reduce; list or scalar. If None (the
default), reduces all dimensions.
|
keepdims
|
If true, retain reduced dimensions with length 1. |
reduction_axes
|
Deprecated name of axis .
|
keep_dims
|
Deprecated alias for keepdims .
|
Returns | |
---|---|
The reduced Tensor. |