tensorflow::
ops::
NonMaxSuppressionV5
#include <image_ops.h>
Greedily selects a subset of bounding boxes in descending order of score,.
Summary
pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than
score_threshold
are removed. Bounding boxes are supplied as [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the
tf.gather operation
. For example: selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices) This op also supports a Soft-NMS (with Gaussian weighting) mode (c.f. Bodla et al,
https://arxiv.org/abs/1704.04503
) where boxes reduce the score of other overlapping boxes instead of directly causing them to be pruned. To enable this Soft-NMS mode, set the
soft_nms_sigma
parameter to be larger than 0.
Args:
- scope: A Scope object
-
boxes: A 2-D float tensor of shape
[num_boxes, 4]
. -
scores: A 1-D float tensor of shape
[num_boxes]
representing a single score corresponding to each box (each row of boxes). - max_output_size: A scalar integer tensor representing the maximum number of boxes to be selected by non max suppression.
- iou_threshold: A 0-D float tensor representing the threshold for deciding whether boxes overlap too much with respect to IOU.
- score_threshold: A 0-D float tensor representing the threshold for deciding when to remove boxes based on score.
-
soft_nms_sigma: A 0-D float tensor representing the sigma parameter for Soft NMS; see Bodla et al (c.f.
https://arxiv.org/abs/1704.04503
). When
soft_nms_sigma=0.0
(which is default), we fall back to standard (hard) NMS.
Optional attributes (see
Attrs
):
-
pad_to_max_output_size: If true, the output
selected_indices
is padded to be of lengthmax_output_size
. Defaults to false.
Returns:
-
Output
selected_indices: A 1-D integer tensor of shape[M]
representing the selected indices from the boxes tensor, whereM <= max_output_size
. -
Output
selected_scores: A 1-D float tensor of shape[M]
representing the corresponding scores for each selected box, whereM <= max_output_size
. Scores only differ from corresponding input scores when using Soft NMS (i.e. whensoft_nms_sigma>0
) -
Output
valid_outputs: A 0-D integer tensor representing the number of valid elements inselected_indices
, with the valid elements appearing first.
Constructors and Destructors |
|
---|---|
NonMaxSuppressionV5
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
boxes, ::
tensorflow::Input
scores, ::
tensorflow::Input
max_output_size, ::
tensorflow::Input
iou_threshold, ::
tensorflow::Input
score_threshold, ::
tensorflow::Input
soft_nms_sigma)
|
|
NonMaxSuppressionV5
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
boxes, ::
tensorflow::Input
scores, ::
tensorflow::Input
max_output_size, ::
tensorflow::Input
iou_threshold, ::
tensorflow::Input
score_threshold, ::
tensorflow::Input
soft_nms_sigma, const
NonMaxSuppressionV5::Attrs
& attrs)
|
Public attributes |
|
---|---|
operation
|
|
selected_indices
|
|
selected_scores
|
|
valid_outputs
|
Public static functions |
|
---|---|
PadToMaxOutputSize
(bool x)
|
Structs |
|
---|---|
tensorflow::
|
Optional attribute setters for NonMaxSuppressionV5 . |
Public attributes
Public functions
NonMaxSuppressionV5
NonMaxSuppressionV5( const ::tensorflow::Scope & scope, ::tensorflow::Input boxes, ::tensorflow::Input scores, ::tensorflow::Input max_output_size, ::tensorflow::Input iou_threshold, ::tensorflow::Input score_threshold, ::tensorflow::Input soft_nms_sigma )
NonMaxSuppressionV5
NonMaxSuppressionV5( const ::tensorflow::Scope & scope, ::tensorflow::Input boxes, ::tensorflow::Input scores, ::tensorflow::Input max_output_size, ::tensorflow::Input iou_threshold, ::tensorflow::Input score_threshold, ::tensorflow::Input soft_nms_sigma, const NonMaxSuppressionV5::Attrs & attrs )