tensorflow::
ops::
MaxPool
#include <nn_ops.h>
Performs max pooling on the input.
Summary
Args:
- scope: A Scope object
- input: 4-D input to pool over.
- ksize: The size of the window for each dimension of the input tensor.
- strides: The stride of the sliding window for each dimension of the input tensor.
- padding: The type of padding algorithm to use.
Optional attributes (see
Attrs
):
- data_format: Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width].
Returns:
-
Output
: The max pooled output tensor.
Constructors and Destructors |
|
---|---|
MaxPool
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
input, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
|
MaxPool
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
input, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding, const
MaxPool::Attrs
& attrs)
|
Public attributes |
|
---|---|
operation
|
|
output
|
Public functions |
|
---|---|
node
() const
|
::tensorflow::Node *
|
operator::tensorflow::Input
() const
|
|
operator::tensorflow::Output
() const
|
|
Public static functions |
|
---|---|
DataFormat
(StringPiece x)
|
|
ExplicitPaddings
(const gtl::ArraySlice< int > & x)
|
Structs |
|
---|---|
tensorflow::
|
Optional attribute setters for MaxPool . |
Public attributes
Public functions
MaxPool
MaxPool( const ::tensorflow::Scope & scope, ::tensorflow::Input input, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding )
MaxPool
MaxPool( const ::tensorflow::Scope & scope, ::tensorflow::Input input, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding, const MaxPool::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const