tensorflow::
ops::
DeserializeSparse
#include <sparse_ops.h>
Deserialize
SparseTensor
objects.
Summary
The input
serialized_sparse
must have the shape
[?, ?, ..., ?, 3]
where the last dimension stores serialized
SparseTensor
objects and the other N dimensions (N >= 0) correspond to a batch. The ranks of the original
SparseTensor
objects must all match. When the final
SparseTensor
is created, its rank is the rank of the incoming
SparseTensor
objects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.
The output
SparseTensor
object's shape values for the original dimensions are the max across the input
SparseTensor
objects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.
The input
SparseTensor
objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run
SparseReorder
to restore index ordering.
For example, if the serialized input is a
[2 x 3]
matrix representing two original
SparseTensor
objects:
index = [ 0] [10] [20] values = [1, 2, 3] shape = [50]
and
index = [ 2] [10] values = [4, 5] shape = [30]
then the final deserialized
SparseTensor
will be:
index = [0 0] [0 10] [0 20] [1 2] [1 10] values = [1, 2, 3, 4, 5] shape = [2 50]
Args:
- scope: A Scope object
-
serialized_sparse: The serialized
SparseTensor
objects. The last dimension must have 3 columns. -
dtype: The
dtype
of the serializedSparseTensor
objects.
Returns:
Constructors and Destructors |
|
---|---|
DeserializeSparse
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
serialized_sparse, DataType dtype)
|
Public attributes |
|
---|---|
operation
|
|
sparse_indices
|
|
sparse_shape
|
|
sparse_values
|
Public attributes
Public functions
DeserializeSparse
DeserializeSparse( const ::tensorflow::Scope & scope, ::tensorflow::Input serialized_sparse, DataType dtype )