View source on GitHub |
Represents a dataset distributed among devices and machines.
A tf.distribute.DistributedDataset
could be thought of as a "distributed"
dataset. When you use tf.distribute
API to scale training to multiple
devices or machines, you also need to distribute the input data, which leads
to a tf.distribute.DistributedDataset
instance, instead of a
tf.data.Dataset
instance in the non-distributed case. In TF 2.x,
tf.distribute.DistributedDataset
objects are Python iterables.
There are two APIs to create a tf.distribute.DistributedDataset
object:
tf.distribute.Strategy.experimental_distribute_dataset(dataset)
and
tf.distribute.Strategy.experimental_distribute_datasets_from_function(dataset_fn)
.
When to use which? When you have a tf.data.Dataset
instance, and the
regular batch splitting (i.e. re-batch the input tf.data.Dataset
instance
with a new batch size that is equal to the global batch size divided by the
number of replicas in sync) and autosharding (i.e. the
tf.data.experimental.AutoShardPolicy
options) work for you, use the former
API. Otherwise, if you are not using a canonical tf.data.Dataset
instance,
or you would like to customize the batch splitting or sharding, you can wrap
these logic in a dataset_fn
and use the latter API. Both API handles
prefetch to device for the user. For more details and examples, follow the
links to the APIs.
There are two main usages of a DistributedDataset
object:
Iterate over it to generate the input for a single device or multiple devices, which is a
tf.distribute.DistributedValues
instance. To do this, you can:- use a pythonic for-loop construct:
global_batch_size = 2
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensors(([1.],[1.])).repeat(4).batch(global_batch_size)
dist_dataset = strategy.experimental_distribute_dataset(dataset)
@tf.function
def train_step(input):
features, labels = input
return labels - 0.3 * features
for x in dist_dataset:
# train_step trains the model using the dataset elements
loss = strategy.run(train_step, args=(x,))
print("Loss is", loss)
Loss is tf.Tensor(
[[0.7]
[0.7]], shape=(2, 1), dtype=float32)
Loss is tf.Tensor(
[[0.7]
[0.7]], shape=(2, 1), dtype=float32)
Placing the loop inside a <a href="../../tf/function"><code>tf.function</code></a> will give a performance boost.
However `break` and `return` are currently not supported if the loop is
placed inside a <a href="../../tf/function"><code>tf.function</code></a>. We also don't support placing the loop
inside a <a href="../../tf/function"><code>tf.function</code></a> when using
<a href="../../tf/distribute/experimental/MultiWorkerMirroredStrategy"><code>tf.distribute.experimental.MultiWorkerMirroredStrategy</code></a> or
<a href="../../tf/distribute/experimental/TPUStrategy"><code>tf.distribute.experimental.TPUStrategy</code></a> with multiple workers.
- use
__iter__
to create an explicit iterator, which is of typetf.distribute.DistributedIterator
global_batch_size = 4
strategy = tf.distribute.MirroredStrategy()
train_dataset = tf.data.Dataset.from_tensors(([1.],[1.])).repeat(50).batch(global_batch_size)
train_dist_dataset = strategy.experimental_distribute_dataset(train_dataset)
@tf.function
def distributed_train_step(dataset_inputs):
def train_step(input):
loss = tf.constant(0.1)
return loss
per_replica_losses = strategy.run(train_step, args=(dataset_inputs,))
return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,axis=None)
EPOCHS = 2
STEPS = 3
for epoch in range(EPOCHS):
total_loss = 0.0
num_batches = 0
dist_dataset_iterator = iter(train_dist_dataset)
for _ in range(STEPS):
total_loss += distributed_train_step(next(dist_dataset_iterator))
num_batches += 1
average_train_loss = total_loss / num_batches
template = ("Epoch {}, Loss: {}")
print (template.format(epoch+1, average_train_loss))
Epoch 1, Loss: 0.10000000894069672
Epoch 2, Loss: 0.10000000894069672
To achieve a performance improvement, you can also wrap the strategy.run
call with a tf.range
inside a tf.function
. This runs multiple steps in a
tf.function
. Autograph will convert it to a tf.while_loop
on the worker.
However, it is less flexible comparing with running a single step inside
tf.function
. For example, you cannot run things eagerly or arbitrary
python code within the steps.
Inspect the
tf.TypeSpec
of the data generated byDistributedDataset
.tf.distribute.DistributedDataset
generatestf.distribute.DistributedValues
as input to the devices. If you pass the input to atf.function
and would like to specify the shape and type of each Tensor argument to the function, you can pass atf.TypeSpec
object to theinput_signature
argument of thetf.function
. To get thetf.TypeSpec
of the input, you can use theelement_spec
property of thetf.distribute.DistributedDataset
ortf.distribute.DistributedIterator
object.For example:
global_batch_size = 2
epochs = 1
steps_per_epoch = 1
mirrored_strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensors(([2.])).repeat(100).batch(global_batch_size)
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
@tf.function(input_signature=[dist_dataset.element_spec])
def train_step(per_replica_inputs):
def step_fn(inputs):
return tf.square(inputs)
return mirrored_strategy.run(step_fn, args=(per_replica_inputs,))
for _ in range(epochs):
iterator = iter(dist_dataset)
for _ in range(steps_per_epoch):
output = train_step(next(iterator))
print(output)
tf.Tensor(
[[4.]
[4.]], shape=(2, 1), dtype=float32)
Visit the tutorial on distributed input for more examples and caveats.
Attributes | |
---|---|
element_spec
|
The type specification of an element of this tf.distribute.DistributedDataset .
The above example corresponds to the case where you have only one device. If you have two devices, for example,
Then the final line will print out:
|
Methods
__iter__
__iter__()
Creates an iterator for the tf.distribute.DistributedDataset
.
The returned iterator implements the Python Iterator protocol.
Example usage:
global_batch_size = 4
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4]).repeat().batch(global_batch_size)
distributed_iterator = iter(strategy.experimental_distribute_dataset(dataset))
print(next(distributed_iterator))
tf.Tensor([1 2 3 4], shape=(4,), dtype=int32)
The above example corresponds to the case where you have only one device. If you have two devices, for example,
strategy = tf.distribute.MirroredStrategy(['/gpu:0', '/gpu:1'])
Then the final line will print out:
PerReplica:{
0: tf.Tensor([1 2], shape=(2,), dtype=int32),
1: tf.Tensor([3 4], shape=(2,), dtype=int32)
}
Returns | |
---|---|
An tf.distribute.DistributedIterator instance for the given
tf.distribute.DistributedDataset object to enumerate over the
distributed data.
|