Computes softmax activations. (deprecated arguments)
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.compat.v1.math.softmax(
logits, axis=None, name=None, dim=None
)
This function performs the equivalent of
softmax = tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis)
See: https://en.wikipedia.org/wiki/Softmax_function
Example usage:
tf.nn.softmax([-1, 0., 1.])
<tf.Tensor: shape=(3,), dtype=float32,
numpy=array([0.09003057, 0.24472848, 0.66524094], dtype=float32)>
Args | |
---|---|
logits
|
A non-empty Tensor , or an object whose type has a registered
Tensor conversion function. Must be one of the following types:
half ,float32 , float64 . See also convert_to_tensor
|
axis
|
The dimension softmax would be performed on. The default is -1 which indicates the last dimension. |
name
|
A name for the operation (optional). |
dim
|
Deprecated alias for axis .
|
Returns | |
---|---|
A Tensor . Has the same type and shape as logits .
|
Raises | |
---|---|
InvalidArgumentError
|
if logits is empty or axis is beyond the last
dimension of logits .
|
TypeError
|
If no conversion function is registered for logits to
Tensor.
|
RuntimeError
|
If a registered conversion function returns an invalid value. |