ยกเลิก | ยกข้อยกเว้นเพื่อยกเลิกกระบวนการเมื่อถูกเรียก |
ทั้งหมด | คำนวณ "ตรรกะและ" ขององค์ประกอบในมิติต่างๆ ของเทนเซอร์ |
ออลทูออล <T> | Op เพื่อแลกเปลี่ยนข้อมูลระหว่างแบบจำลอง TPU |
AnonymousIteratorV2 | คอนเทนเนอร์สำหรับทรัพยากรตัววนซ้ำ |
หน่วยความจำแคชที่ไม่ระบุชื่อ | |
AnonymousMultiDeviceIterator | คอนเทนเนอร์สำหรับทรัพยากรตัววนซ้ำหลายอุปกรณ์ |
เครื่องกำเนิดเมล็ดพันธุ์แบบสุ่มที่ไม่เปิดเผยตัวตน | |
เครื่องกำเนิดเมล็ดพันธุ์ที่ไม่เปิดเผยตัวตน | |
ใดๆ | คำนวณ "ตรรกะหรือ" ขององค์ประกอบในมิติต่างๆ ของเทนเซอร์ |
ApplyAdagradV2 <T> | อัปเดต '*var' ตามรูปแบบ adagrad |
AssertCardinalityชุดข้อมูล | |
AssertNextชุดข้อมูล | การเปลี่ยนแปลงที่ยืนยันว่าการเปลี่ยนแปลงใดจะเกิดขึ้นต่อไป |
ยืนยันสิ่งนั้น | ยืนยันว่าเงื่อนไขที่กำหนดเป็นจริง |
กำหนด <T> | อัปเดต 'ref' โดยกำหนด 'value' ให้กับมัน |
มอบหมายเพิ่ม <T> | อัปเดต 'ref' โดยเพิ่ม 'value' เข้าไป |
AssignAddVariableOp | เพิ่มค่าให้กับค่าปัจจุบันของตัวแปร |
มอบหมายย่อย <T> | อัปเดต 'ref' โดยลบ 'value' ออกจากมัน |
กำหนด SubVariableOp | ลบค่าออกจากค่าปัจจุบันของตัวแปร |
กำหนดตัวแปรOp | กำหนดค่าใหม่ให้กับตัวแปร |
ชุดข้อมูล AutoShard | สร้างชุดข้อมูลที่แบ่งส่วนชุดข้อมูลอินพุต |
BandedTriangleSolve <T> | |
สิ่งกีดขวาง | กำหนดอุปสรรคที่ยังคงมีอยู่ในการประมวลผลกราฟต่างๆ |
สิ่งกีดขวางปิด | ปิดสิ่งกีดขวางที่กำหนด |
สิ่งกีดขวางขนาดไม่สมบูรณ์ | คำนวณจำนวนองค์ประกอบที่ไม่สมบูรณ์ในแผงกั้นที่กำหนด |
สิ่งกีดขวางแทรกมากมาย | สำหรับแต่ละคีย์ ให้กำหนดค่าตามลำดับให้กับส่วนประกอบที่ระบุ |
Barrier ReadySize | คำนวณจำนวนองค์ประกอบที่สมบูรณ์ในแผงกั้นที่กำหนด |
BarrierTakeMany | นำองค์ประกอบที่เสร็จสมบูรณ์ตามจำนวนที่กำหนดจากสิ่งกีดขวาง |
แบทช์ | แบทช์เทนเซอร์อินพุตทั้งหมดโดยไม่กำหนดไว้ |
BatchMatMulV2 <T> | คูณเทนเซอร์สองตัวเป็นชุด |
แบทช์ทูสเปซ <T> | BatchToSpace สำหรับเทนเซอร์ 4 มิติประเภท T |
BatchToSpaceNd <T> | BatchToSpace สำหรับเทนเซอร์ ND ประเภท T |
BesselI0 <T ขยายหมายเลข> | |
BesselI1 <T ขยายจำนวน> | |
BesselJ0 <T ขยายจำนวน> | |
BesselJ1 <T ขยายจำนวน> | |
BesselK0 <T ขยายหมายเลข> | |
BesselK0e <T ขยายหมายเลข> | |
BesselK1 <T ขยายหมายเลข> | |
BesselK1e <T ขยายหมายเลข> | |
BesselY0 <T ขยายจำนวน> | |
BesselY1 <T ขยายจำนวน> | |
บิตคาสต์ <U> | Bitcasts เทนเซอร์จากประเภทหนึ่งไปยังอีกประเภทหนึ่งโดยไม่ต้องคัดลอกข้อมูล |
BlockLSTM <T ขยายหมายเลข> | คำนวณการแพร่กระจายเซลล์ไปข้างหน้าของ LSTM สำหรับขั้นตอนเวลาทั้งหมด |
BlockLSTMGrad <T ขยายหมายเลข> | คำนวณการแพร่กระจายเซลล์ LSTM ย้อนหลังสำหรับลำดับเวลาทั้งหมด |
BlockLSTMGradV2 <T ขยายหมายเลข> | คำนวณการแพร่กระจายเซลล์ LSTM ย้อนหลังสำหรับลำดับเวลาทั้งหมด |
BlockLSTMV2 <T ขยายหมายเลข> | คำนวณการแพร่กระจายเซลล์ไปข้างหน้าของ LSTM สำหรับขั้นตอนเวลาทั้งหมด |
BoostedTreesAggregateStats | รวมสรุปสถิติสะสมสำหรับแบตช์ |
BoostedTreesBucketize | เก็บข้อมูลแต่ละฟีเจอร์ตามขอบเขตของบัคเก็ต |
BoostedTreesคำนวณคุณสมบัติที่ดีที่สุดแยก | คำนวณกำไรสำหรับแต่ละคุณสมบัติและส่งกลับข้อมูลการแยกที่ดีที่สุดเท่าที่เป็นไปได้สำหรับคุณสมบัตินั้น |
BoostedTreesคำนวณคุณสมบัติที่ดีที่สุดSplitV2 | คำนวณกำไรสำหรับแต่ละคุณสมบัติและส่งกลับข้อมูลการแยกที่ดีที่สุดที่เป็นไปได้สำหรับแต่ละโหนด |
BoostedTrees คำนวณสิ่งที่ดีที่สุดกำไรต่อคุณสมบัติ | คำนวณกำไรสำหรับแต่ละคุณสมบัติและส่งกลับข้อมูลการแยกที่ดีที่สุดเท่าที่เป็นไปได้สำหรับคุณสมบัตินั้น |
BoostedTreesCenterBias | คำนวณค่าก่อนหน้าจากข้อมูลการฝึก (อคติ) และเติมค่าก่อนหน้าของการบันทึกในโหนดแรก |
BoostedTreesCreateEnsemble | สร้างแบบจำลองทั้งมวลของแผนภูมิและส่งกลับหมายเลขอ้างอิง |
BoostedTreesCreateQuantileStreamResource | สร้างทรัพยากรสำหรับสตรีม Quantile |
BoostedTreesDeserializeEnsemble | ดีซีเรียลไลซ์การกำหนดค่า Tree Ensemble ที่เป็นอนุกรมและแทนที่แผนผังปัจจุบัน ทั้งมวล |
BoostedTreesEnsembleResourceHandleOp | สร้างหมายเลขอ้างอิงให้กับ BoostedTreesEnsembleResource |
BoostedTreesExampleDebugOutputs | เอาต์พุตการตีความการดีบัก/โมเดลสำหรับแต่ละตัวอย่าง |
BoostedTreesFlushQuantileสรุป | ล้างข้อมูลสรุปควอนไทล์จากทรัพยากรสตรีมควอนไทล์แต่ละรายการ |
BoostedTreesGetEnsembleStates | เรียกข้อมูลโทเค็นการประทับทรัพยากรชุดต้นไม้ จำนวนต้นไม้ และสถิติการเติบโต |
BoostedTreesMakeQuantileSummaries | จัดทำข้อมูลสรุปของปริมาณสำหรับแบทช์ |
BoostedTreesMakeStatsSummary | ทำการสรุปสถิติสะสมสำหรับแบตช์ |
BoostedTreesทำนาย | รันตัวทำนายชุดการถดถอยแบบบวกหลายตัวบนอินสแตนซ์อินพุตและ คำนวณบันทึก |
BoostedTreesQuantileStreamResourceAddSummary | เพิ่มข้อมูลสรุปควอนไทล์ให้กับทรัพยากรสตรีมควอนไทล์แต่ละรายการ |
BoostedTreesQuantileStreamResourceDeserialize | ดีซีเรียลไลซ์ขอบเขตบัคเก็ตและตั้งค่าสถานะพร้อมลงใน QuantileAccumulator ปัจจุบัน |
BoostedTreesQuantileStreamResourceFlush | ล้างข้อมูลสรุปสำหรับทรัพยากรสตรีมแบบควอนไทล์ |
BoostedTreesQuantileStreamResourceGetBucketBoundaries | สร้างขอบเขตบัคเก็ตสำหรับแต่ละฟีเจอร์ตามข้อมูลสรุปที่สะสม |
BoostedTreesQuantileStreamResourceHandleOp | สร้างหมายเลขอ้างอิงให้กับ BoostedTreesQuantileStreamResource |
BoostedTreesSerializeEnsemble | ทำให้ชุดต้นไม้เป็นอนุกรมเป็นโปรโต |
BoostedTreesSparseAggregateStats | รวมสรุปสถิติสะสมสำหรับแบตช์ |
BoostedTreesSparseCalculateBestFeatureSplit | คำนวณกำไรสำหรับแต่ละคุณสมบัติและส่งกลับข้อมูลการแยกที่ดีที่สุดเท่าที่เป็นไปได้สำหรับคุณสมบัตินั้น |
BoostedTreesTrainingทำนาย | รันตัวทำนายชุดการถดถอยแบบบวกหลายตัวบนอินสแตนซ์อินพุตและ คำนวณการอัปเดตเป็นบันทึกที่แคชไว้ |
BoostedTreesUpdateEnsemble | อัปเดตชุดต้นไม้โดยการเพิ่มเลเยอร์ให้กับต้นไม้ต้นสุดท้ายที่กำลังเติบโต หรือโดยการเริ่มต้นไม้ใหม่ |
BoostedTreesUpdateEnsembleV2 | อัปเดตชุดต้นไม้โดยการเพิ่มเลเยอร์ให้กับต้นไม้ต้นสุดท้ายที่กำลังเติบโต หรือโดยการเริ่มต้นไม้ใหม่ |
BroadcastDynamicShape <T ขยายหมายเลข> | คืนรูปร่างของ s0 op s1 พร้อมการออกอากาศ |
BroadcastGradientArgs <T ขยายหมายเลข> | ส่งกลับดัชนีการลดสำหรับการคำนวณการไล่ระดับสีของ s0 op s1 พร้อมการออกอากาศ |
ออกอากาศถึง <T> | ออกอากาศอาร์เรย์สำหรับรูปร่างที่เข้ากันได้ |
ถัง | Bucketizes 'อินพุต' ตาม 'ขอบเขต' |
CSRSparseMatrixComponents <T> | อ่านส่วนประกอบ CSR ที่แบทช์ `ดัชนี` |
CSRSparseMatrixToDense <T> | แปลง CSRSparseMatrix (อาจเป็นแบตช์) เป็นหนาแน่น |
CSRSparseMatrixToSparseTensor <T> | แปลง CSRSparesMatrix (อาจเป็นชุด) เป็น SparseTensor |
ชุดข้อมูล CSV | |
CSVDatasetV2 | |
CTCLossV2 | คำนวณการสูญเสีย CTC (ความน่าจะเป็นของบันทึก) สำหรับรายการแบตช์แต่ละรายการ |
ชุดข้อมูลแคชV2 | |
CheckNumericsV2 <T ขยายหมายเลข> | ตรวจสอบเทนเซอร์สำหรับค่า NaN, -Inf และ +Inf |
เลือกชุดข้อมูลที่เร็วที่สุด | |
ClipByValue <T> | ตัดค่าเทนเซอร์ให้เป็นค่าต่ำสุดและสูงสุดที่ระบุ |
CollectiveGather <T ขยายหมายเลข> | สะสมเทนเซอร์หลายตัวที่มีประเภทและรูปร่างเหมือนกันร่วมกัน |
CollectivePermute <T> | Op เพื่อเปลี่ยนเทนเซอร์ข้ามอินสแตนซ์ TPU ที่จำลองแบบ |
CollectiveReduceV2 <T ขยายหมายเลข> | ลดเทนเซอร์หลายตัวที่มีประเภทและรูปร่างเหมือนกันร่วมกัน |
รวม NonMaxSuppression | เลือกชุดย่อยของกรอบขอบเขตอย่างตะกละตะกลามโดยเรียงลำดับคะแนนจากมากไปหาน้อย การดำเนินการนี้ดำเนินการ non_max_suppression บนอินพุตต่อแบตช์ ในทุกคลาส |
บีบอัดองค์ประกอบ | บีบอัดองค์ประกอบชุดข้อมูล |
ComputeBatchSize | คำนวณขนาดแบตช์แบบคงที่ของชุดข้อมูลโดยไม่ใช้แบตช์บางส่วน |
เชื่อมต่อ <T> | เชื่อมต่อเทนเซอร์ตามมิติเดียว |
กำหนดค่า DistributedTPU | ตั้งค่าโครงสร้างแบบรวมศูนย์สำหรับระบบ TPU แบบกระจาย |
กำหนดค่าการฝัง TPU | ตั้งค่า TPUEmbedding ในระบบ TPU แบบกระจาย |
ค่าคงที่ <T> | ตัวดำเนินการที่สร้างค่าคงที่ |
ใช้ MutexLock | การดำเนินการนี้ใช้การล็อกที่สร้างโดย `MutexLock` |
ทริกเกอร์ควบคุม | ไม่ทำอะไรเลย |
คัดลอก <ท> | คัดลอกเทนเซอร์จาก CPU-to-CPU หรือ GPU-to-GPU |
คัดลอกโฮสต์ <T> | คัดลอกเทนเซอร์ไปยังโฮสต์ |
CountUpTo <T ขยายหมายเลข> | เพิ่ม 'การอ้างอิง' จนกว่าจะถึง 'ขีดจำกัด' |
CrossReplicaSum <T ขยายหมายเลข> | อินพุต Op to sum ในอินสแตนซ์ TPU ที่จำลองแบบ |
CudnnRNNBackpropV3 <T ขยายหมายเลข> | ขั้นบันไดหลัง CudnnRNNV3. |
CudnnRNNCanonicalToParamsV2 <T ขยายหมายเลข> | แปลงพารามิเตอร์ CudnnRNN จากรูปแบบมาตรฐานเป็นรูปแบบที่ใช้งานได้ |
CudnnRNNParamsToCanonicalV2 <T ขยายหมายเลข> | ดึงข้อมูลพารามิเตอร์ CudnnRNN ในรูปแบบมาตรฐาน |
CudnnRNNV3 <T ขยายหมายเลข> | RNN ที่สนับสนุนโดย cuDNN |
CumulativeLogsumexp <T ขยายหมายเลข> | คำนวณผลคูณสะสมของเทนเซอร์ `x` ตามแนว 'แกน' |
DataServiceชุดข้อมูล | |
ชุดข้อมูลCardinality | ส่งกลับจำนวนสมาชิกของ `input_dataset` |
ชุดข้อมูลFromGraph | สร้างชุดข้อมูลจาก `graph_def` ที่กำหนด |
ชุดข้อมูล ToGraphV2 | ส่งกลับ GraphDef ที่เป็นอนุกรมซึ่งเป็นตัวแทนของ `input_dataset` |
Dawsn <T ขยายจำนวน> | |
DebugGradientIdentity <T> | การระบุตัวตนสำหรับการดีบักการไล่ระดับสี |
DebugGradientRefIdentity <T> | การระบุตัวตนสำหรับการดีบักการไล่ระดับสี |
ตรวจแก้จุดบกพร่อง <T> | จัดเตรียมการแมปข้อมูลประจำตัวของเทนเซอร์อินพุตประเภทที่ไม่ใช่การอ้างอิงสำหรับการดีบัก |
DebugIdentityV2 <T> | การแก้ไขข้อบกพร่อง Identity V2 Op. |
ดีบักNanCount | ดีบักตัวนับค่า NaN Op. |
ดีบักสรุปตัวเลข | การแก้ปัญหาสรุปตัวเลข |
DebugNumericSummaryV2 <U ขยายหมายเลข> | ดีบักสรุปตัวเลข V2 Op. |
DecodeImage <T ขยายหมายเลข> | ฟังก์ชันสำหรับ decode_bmp, decode_gif, decode_jpeg และ decode_png |
DecodePaddedRaw <T ขยายหมายเลข> | ตีความไบต์ของสตริงใหม่เป็นเวกเตอร์ของตัวเลข |
ถอดรหัสโปรโต | สหกรณ์แยกฟิลด์จากข้อความบัฟเฟอร์โปรโตคอลแบบซีเรียลไลซ์เป็นเทนเซอร์ |
ดีพคัดลอก <T> | สร้างสำเนาของ `x` |
ลบIterator | คอนเทนเนอร์สำหรับทรัพยากรตัววนซ้ำ |
ลบ MemoryCache | |
ลบ MultiDeviceIterator | คอนเทนเนอร์สำหรับทรัพยากรตัววนซ้ำ |
ลบ RandomSeedGenerator | |
ลบSeedGenerator | |
ลบเซสชัน Tensor | ลบเทนเซอร์ที่ระบุโดยตัวจัดการในเซสชัน |
DenseBincount <U ขยายหมายเลข> | นับจำนวนครั้งของแต่ละค่าในอาร์เรย์จำนวนเต็ม |
DenseCountSparseOutput <U ขยายหมายเลข> | ดำเนินการนับถังเอาท์พุตแบบกระจัดกระจายสำหรับอินพุต tf.tensor |
DenseToCSRSparseMatrix | แปลงเทนเซอร์หนาแน่นเป็น CSRSparseMatrix (อาจเป็นแบตช์) |
ทำลายทรัพยากรOp | ลบทรัพยากรที่ระบุโดยหมายเลขอ้างอิง |
ทำลายตัวแปรชั่วคราว <T> | ทำลายตัวแปรชั่วคราวและส่งกลับค่าสุดท้าย |
ดัชนีอุปกรณ์ | ส่งคืนดัชนีของอุปกรณ์ที่ op ทำงาน |
ชุดข้อมูล DirectedInterleave | ใช้แทน `InterleaveDataset` ในรายการชุดข้อมูล `N` ที่คงที่ |
DrawBoundingBoxesV2 <T ขยายหมายเลข> | วาดกรอบขอบบนชุดรูปภาพ |
DummyIterationCounter | |
DummyMemoryCache | |
เครื่องกำเนิด DummySeed | |
พาร์ติชันไดนามิก <T> | แบ่งพาร์ติชัน `data` เป็นเทนเซอร์ `num_partitions` โดยใช้ดัชนีจาก `partitions` |
ไดนามิกสติทช์ <T> | แทรกค่าจากเทนเซอร์ "ข้อมูล" ลงในเทนเซอร์ตัวเดียว |
แก้ไขระยะทาง | คำนวณระยะทางแก้ไขของ Levenshtein (อาจเป็นมาตรฐาน) |
อิ๊ก <U> | คำนวณการสลายตัวแบบลักษณะเฉพาะของเมทริกซ์จตุรัสตั้งแต่หนึ่งเมทริกซ์ขึ้นไป |
ไอน์ซุม <T> | การหดตัวของเทนเซอร์ตามแบบแผนการรวมของไอน์สไตน์ |
ว่างเปล่า <T> | สร้างเทนเซอร์ตามรูปร่างที่กำหนด |
ว่างเปล่า TensorList | สร้างและส่งกลับรายการเทนเซอร์ที่ว่างเปล่า |
แผนที่ Tensor ว่างเปล่า | สร้างและส่งกลับแผนที่เทนเซอร์ว่างเปล่า |
เข้ารหัสโปรโต | op ทำให้ข้อความ protobuf อยู่ในเทนเซอร์อินพุต |
เข้าคิว TPUembedingIntegerBatch | การดำเนินการที่จัดคิวรายการเทนเซอร์แบทช์อินพุตเป็น TPUEmbedding |
เข้าคิว TPUembedRaggedTensorBatch | ทำให้การย้ายโค้ดที่ใช้ tf.nn.embedding_lookup() ง่ายขึ้น |
เข้าคิวTPUmbeddingSparseBatch | การดำเนินการที่จัดคิวดัชนีอินพุต TPUEmbedding จาก SparseTensor |
จัดคิว TPUembedSparseTensorBatch | ทำให้การย้ายโค้ดที่ใช้ tf.nn.embedding_lookup_sparse() ง่ายขึ้น |
ตรวจสอบรูปร่าง <T> | ตรวจสอบให้แน่ใจว่ารูปร่างของเทนเซอร์ตรงกับรูปร่างที่คาดหวัง |
ป้อน <T> | สร้างหรือค้นหาเฟรมย่อย และทำให้ 'ข้อมูล' พร้อมใช้งานสำหรับเฟรมย่อย |
Erfinv <T ขยายหมายเลข> | |
ยูคลิดนอร์ม <T> | คำนวณบรรทัดฐานยุคคลิดขององค์ประกอบในมิติของเมตริกซ์ |
ออกจาก <T> | ออกจากเฟรมปัจจุบันไปยังเฟรมหลัก |
ขยาย Dims <T> | แทรกมิติ 1 ลงในรูปร่างของเทนเซอร์ |
ชุดข้อมูล AutoShard แบบทดลอง | สร้างชุดข้อมูลที่แบ่งส่วนชุดข้อมูลอินพุต |
ชุดข้อมูล ExperimentalBytesProducedStats | บันทึกขนาดไบต์ของแต่ละองค์ประกอบของ `input_dataset` ใน StatsAggregator |
ชุดข้อมูลแบบทดลองเลือกเร็วที่สุด | |
ชุดข้อมูลเชิงทดลอง Cardinality | ส่งกลับจำนวนสมาชิกของ `input_dataset` |
ชุดข้อมูลทดลองToTFRecord | เขียนชุดข้อมูลที่กำหนดลงในไฟล์ที่กำหนดโดยใช้รูปแบบ TFRecord |
ชุดข้อมูล DenseToSparseBatch แบบทดลอง | สร้างชุดข้อมูลที่จัดกลุ่มองค์ประกอบอินพุตลงใน SparseTensor |
ชุดข้อมูล LatencyStats แบบทดลอง | บันทึกเวลาแฝงของการสร้างองค์ประกอบ `input_dataset` ใน StatsAggregator |
ชุดข้อมูลการจับคู่ไฟล์แบบทดลอง | |
ชุดข้อมูลการทดลองMaxIntraOpParallelism | สร้างชุดข้อมูลที่แทนที่ความขนานภายในปฏิบัติการสูงสุด |
ชุดข้อมูลตัวอย่างแยกวิเคราะห์เชิงทดลอง | แปลง `input_dataset` ที่มีโปรโต 'ตัวอย่าง' เป็นเวกเตอร์ของ DT_STRING ให้เป็นชุดข้อมูลของวัตถุ 'Tensor' หรือ 'SparseTensor' ที่แสดงถึงคุณลักษณะที่แยกวิเคราะห์ |
ชุดข้อมูล PrivateThreadPool แบบทดลอง | สร้างชุดข้อมูลที่ใช้พูลเธรดที่กำหนดเองเพื่อคำนวณ `input_dataset` |
ชุดข้อมูลสุ่มทดลอง | สร้างชุดข้อมูลที่ส่งคืนตัวเลขสุ่มเทียม |
ชุดข้อมูลรีแบทช์แบบทดลอง | สร้างชุดข้อมูลที่เปลี่ยนขนาดแบตช์ |
ชุดข้อมูล ExperimentalSetStatsAggregator | |
ชุดข้อมูลหน้าต่างเลื่อนแบบทดลอง | สร้างชุดข้อมูลที่ส่งผ่านหน้าต่างแบบเลื่อนเหนือ `input_dataset` |
ชุดข้อมูล ExperimentalSql | สร้างชุดข้อมูลที่ดำเนินการแบบสอบถาม SQL และส่งเสียงแถวของชุดผลลัพธ์ |
ExperimentalStatsAggregatorHandle | สร้างทรัพยากรตัวจัดการสถิติ |
ExperimentalStatsAggregatorสรุป | สร้างข้อมูลสรุปของสถิติใดๆ ที่บันทึกโดยผู้จัดการสถิติที่กำหนด |
ชุดข้อมูล Unbatch แบบทดลอง | ชุดข้อมูลที่แบ่งองค์ประกอบของอินพุตออกเป็นหลายองค์ประกอบ |
Expint <T ขยายหมายเลข> | |
แยกGlimpseV2 | แยกข้อมูลเหลือบจากเทนเซอร์อินพุต |
ExtractVolumePatches <T ขยายหมายเลข> | แยก "แพตช์" ออกจาก "อินพุต" และวางไว้ในมิติเอาต์พุต "ความลึก" |
เติม <U> | สร้างเมตริกซ์ที่เต็มไปด้วยค่าสเกลาร์ |
ลายนิ้วมือ | สร้างค่าลายนิ้วมือ |
FresnelCos <T ขยายหมายเลข> | |
FresnelSin <T ขยายหมายเลข> | |
FusedBatchNormGradV3 <T ขยายหมายเลข U ขยายหมายเลข> | การไล่ระดับสีสำหรับการทำให้เป็นมาตรฐานแบบแบทช์ |
FusedBatchNormV3 <T ขยายหมายเลข U ขยายหมายเลข> | การทำให้เป็นมาตรฐานแบบแบตช์ |
GRUBlockCell <T ขยายหมายเลข> | คำนวณการแพร่กระจายไปข้างหน้าของเซลล์ GRU เป็นเวลา 1 ขั้นตอน |
GRUBlockCellGrad <T ขยายหมายเลข> | คำนวณการแพร่กระจายกลับของเซลล์ GRU เป็นเวลา 1 ขั้นตอน |
รวบรวม <T> | รวบรวมชิ้นส่วนจากแกน 'params' 'axis' ตาม 'ดัชนี' |
รวบรวม <T> | รวบรวมชิ้นส่วนจาก 'params' ลงในเทนเซอร์ที่มีรูปร่างที่ระบุโดย 'ดัชนี' |
สร้าง BoundingBoxProposals | การดำเนินการนี้สร้างภูมิภาคที่สนใจจากกล่องขอบเขตที่กำหนด (bbox_deltas) พุก wrt ที่เข้ารหัสตาม eq.2 ใน arXiv:1506.01497 op เลือกกล่องให้คะแนน `pre_nms_topn` อันดับต้นๆ ถอดรหัสด้วยความเคารพต่อจุดยึด ใช้การปราบปรามที่ไม่สูงสุดบนกล่องที่ทับซ้อนกันที่มีค่ามากกว่า `nms_threshold` ค่าทางแยก-over-union (iou) ทิ้งกล่องที่ด้านสั้นกว่าน้อยกว่า ` ขั้นต่ำ_ขนาด`. |
รับ SessionHandle | เก็บเทนเซอร์อินพุตไว้ในสถานะของเซสชันปัจจุบัน |
GetSessionTensor <T> | รับค่าของเทนเซอร์ที่ระบุโดยที่จับ |
การไล่ระดับสี | เพิ่มการดำเนินการเพื่อคำนวณอนุพันธ์บางส่วนของผลรวมของ y s wrt x s เช่น d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2... หากมีการตั้งค่า Options.dx() ค่าเหล่านั้นจะเป็นอนุพันธ์บางส่วนเชิงสัญลักษณ์เริ่มต้นของฟังก์ชันการสูญเสีย L wrt |
รับประกันConst <T> | รับประกันรันไทม์ TF ว่าเทนเซอร์อินพุตมีค่าคงที่ |
แฮชเทเบิล | สร้างตารางแฮชที่ไม่ได้เตรียมใช้งาน |
HistogramFixedWidth <U ขยายตัวเลข> | ส่งกลับฮิสโตแกรมของค่า |
ตัวตน <T> | ส่งกลับเทนเซอร์ที่มีรูปร่างและเนื้อหาเหมือนกับเทนเซอร์หรือค่าอินพุต |
อัตลักษณ์N | ส่งคืนรายการเทนเซอร์ที่มีรูปร่างและเนื้อหาเหมือนกับอินพุต เทนเซอร์ |
ละเว้นชุดข้อมูลข้อผิดพลาด | สร้างชุดข้อมูลที่มีองค์ประกอบของ `input_dataset` โดยไม่สนใจข้อผิดพลาด |
ImageProjectiveTransformV2 <T ขยายหมายเลข> | ใช้การแปลงที่กำหนดกับแต่ละภาพ |
Const ที่ไม่เปลี่ยนรูป <T> | ส่งกลับเทนเซอร์ที่ไม่เปลี่ยนรูปจากขอบเขตหน่วยความจำ |
InfeedDequeue <T> | ตัวยึดตำแหน่งใช้สำหรับค่าที่จะป้อนเข้าสู่การคำนวณ |
InfeedDequeueTuple | ดึงค่าหลายค่าจากการป้อนเข้าเป็นทูเพิล XLA |
ป้อนเข้าคิว | op ที่ป้อนค่า Tensor เดียวในการคำนวณ |
InfeedEnqueuePrelinearizedBuffer | การดำเนินการที่จัดคิวบัฟเฟอร์ที่กำหนดไว้ล่วงหน้าลงในอินพุต TPU |
InfeedEnqueueTuple | ฟีดค่าเทนเซอร์หลายค่าลงในการคำนวณเป็นทูเพิล XLA |
เตรียมใช้งานตาราง | เครื่องมือเริ่มต้นตารางที่รับเทนเซอร์สองตัวสำหรับคีย์และค่าตามลำดับ |
เตรียมใช้งานTableFromDataset | |
เตรียมใช้งาน TableFromTextFile | เตรียมข้อมูลเบื้องต้นให้กับตารางจากไฟล์ข้อความ |
แทนที่เพิ่ม <T> | เพิ่ม v ลงในแถวที่ระบุของ x |
InplaceSub <T> | ลบ `v` ลงในแถวที่ระบุของ `x` |
แทนที่การอัปเดต <T> | อัพเดตแถวที่ระบุ 'i' ด้วยค่า 'v' |
IsBoostedTreesEnsemble เริ่มต้นแล้ว | ตรวจสอบว่า Tree Ensemble ได้รับการเตรียมใช้งานแล้วหรือไม่ |
IsBoostedTreesQuantileStreamResourceเริ่มต้นแล้ว | ตรวจสอบว่าสตรีมควอนไทล์ได้รับการเริ่มต้นแล้วหรือไม่ |
เป็นตัวแปรเริ่มต้น | ตรวจสอบว่าได้เตรียมใช้งานเทนเซอร์แล้วหรือไม่ |
IsotonicRegression <U ขยายจำนวน> | แก้ปัญหาการถดถอยไอโซโทนิกชุดหนึ่ง |
IteratorGetDevice | ส่งกลับชื่อของอุปกรณ์ที่ได้วาง "ทรัพยากร" ไว้ |
การเริ่มต้น KMC2Chain | ส่งกลับดัชนีของจุดข้อมูลที่ควรเพิ่มลงในชุดเริ่มต้น |
การเริ่มต้น KmeansPlusPlus | เลือกแถวอินพุต num_to_sample โดยใช้เกณฑ์ KMeans++ |
KthOrderStatistic | คำนวณสถิติลำดับ K ของชุดข้อมูล |
ชุดข้อมูล LMDB | สร้างชุดข้อมูลที่ปล่อยคู่คีย์-ค่าในไฟล์ LMDB อย่างน้อย 1 ไฟล์ |
LSTMBlockCell <T ขยายหมายเลข> | คำนวณการแพร่กระจายเซลล์ไปข้างหน้า LSTM สำหรับขั้นตอน 1 ครั้ง |
LSTMBlockCellGrad <T ขยายหมายเลข> | คำนวณการแพร่กระจายเซลล์ LSTM ย้อนหลังเป็นเวลา 1 ครั้ง |
LinSpace <T ขยายหมายเลข> | สร้างค่าในช่วงเวลา |
โหลดTPUEmbeddingADAMพารามิเตอร์ | โหลดพารามิเตอร์การฝัง ADAM |
โหลด TPU การฝัง ADAMP พารามิเตอร์ GradAccum Debug | โหลดพารามิเตอร์การฝัง ADAM พร้อมการสนับสนุนการแก้ไขข้อบกพร่อง |
โหลดTPUEmbeddingAdadeltaParameters | โหลดพารามิเตอร์การฝัง Adadelta |
โหลด TPU การฝัง AdadeltaParametersGradAccumDebug | โหลดพารามิเตอร์ Adadelta พร้อมการสนับสนุนการดีบัก |
โหลดTPUEmbeddingAdagradParameters | โหลดพารามิเตอร์การฝัง Adagrad |
โหลด TPU การฝัง AdagradParametersGradAccumDebug | โหลดพารามิเตอร์การฝัง Adagrad ด้วยการสนับสนุนการแก้ไขข้อบกพร่อง |
โหลดTPUEmbeddingCenteredRMSPropParameters | โหลดพารามิเตอร์การฝัง RMSProp ที่กึ่งกลาง |
โหลดTPUEmbeddingFTRLParameters | โหลดพารามิเตอร์การฝัง FTRL |
โหลด TPU การฝัง FTRLParametersGradAccumDebug | โหลดพารามิเตอร์การฝัง FTRL พร้อมการสนับสนุนการแก้ไขข้อบกพร่อง |
โหลดTPUEmbeddingMDLAdagradLightParameters | โหลดพารามิเตอร์การฝัง MDL Adagrad Light |
โหลดพารามิเตอร์ TPU การฝังโมเมนตัม | โหลดพารามิเตอร์การฝังโมเมนตัม |
โหลด TPU การฝังโมเมนตัมพารามิเตอร์ GradAccum Debug | โหลดพารามิเตอร์การฝังโมเมนตัมพร้อมการสนับสนุนการแก้ไขข้อบกพร่อง |
โหลดTPUEmbeddingProximalAdagradParameters | โหลดพารามิเตอร์การฝัง Adagrad ใกล้เคียง |
โหลด TPUembeddingProximalAdagradParametersGradAccumDebug | โหลดพารามิเตอร์การฝัง Adagrad ใกล้เคียงพร้อมการสนับสนุนการแก้ไขข้อบกพร่อง |
โหลดพารามิเตอร์ TPUUEmbeddingProximalYogi | |
โหลดTPUEการฝังProximalYogiParametersGradAccumDebug | |
โหลดTPUEmbeddingRMSPropParameters | โหลดพารามิเตอร์การฝัง RMSProp |
โหลดTPUEmbeddingRMSPropParametersGradAccumDebug | โหลดพารามิเตอร์การฝัง RMSProp ด้วยการสนับสนุนการดีบัก |
โหลดTPUEการฝังพารามิเตอร์ StochasticGradientDescent | โหลดพารามิเตอร์การฝัง SGD |
โหลดTPUการฝังStochasticGradientDescentParametersGradAccumDebug | โหลดพารามิเตอร์การฝัง SGD |
LookupTableExport <T, U> | ส่งออกคีย์และค่าทั้งหมดในตาราง |
LookupTableFind <U> | ค้นหาคีย์ในตาราง ส่งออกค่าที่เกี่ยวข้อง |
LookupTableนำเข้า | แทนที่เนื้อหาของตารางด้วยคีย์และค่าที่ระบุ |
LookupTableInsert | อัพเดตตารางเพื่อเชื่อมโยงคีย์กับค่า |
LookupTable ลบ | ลบคีย์และค่าที่เกี่ยวข้องออกจากตาราง |
LookupTableSize | คำนวณจำนวนองค์ประกอบในตารางที่กำหนด |
ห่วงCond | ส่งต่ออินพุตไปยังเอาต์พุต |
LowerBound <U ขยายตัวเลข> | ใช้ lower_bound(sorted_search_values, ค่า) ในแต่ละแถว |
Lu <T, U ขยายจำนวน> | คำนวณการสลายตัวของ LU ของเมทริกซ์จตุรัสตั้งแต่หนึ่งเมทริกซ์ขึ้นไป |
ทำให้ไม่ซ้ำใคร | ทำให้องค์ประกอบทั้งหมดในมิติที่ไม่ใช่แบทช์ไม่ซ้ำกัน แต่ \"ปิด\" ค่าเริ่มต้นของพวกเขา |
แผนที่เคลียร์ | Op จะลบองค์ประกอบทั้งหมดในคอนเทนเนอร์ที่อยู่ด้านล่าง |
แผนที่ขนาดไม่สมบูรณ์ | Op ส่งคืนจำนวนองค์ประกอบที่ไม่สมบูรณ์ในคอนเทนเนอร์ต้นแบบ |
MapPeek | Op ดูค่าที่คีย์ที่ระบุ |
ขนาดแผนที่ | Op ส่งคืนจำนวนองค์ประกอบในคอนเทนเนอร์ต้นแบบ |
แผนที่Stage | สเตจ (คีย์, ค่า) ในคอนเทนเนอร์ที่ซ่อนอยู่ซึ่งทำงานเหมือนกับแฮชเทเบิล |
แผนที่Unstage | Op ลบและส่งกลับค่าที่เกี่ยวข้องกับคีย์ จากภาชนะที่อยู่ด้านล่าง |
แผนที่UnstageNoKey | Op ลบและส่งกลับการสุ่ม (คีย์, ค่า) จากภาชนะที่อยู่ด้านล่าง |
MatrixDiagPartV2 <T> | ส่งกลับส่วนเส้นทแยงมุมแบบแบทช์ของเทนเซอร์แบบแบทช์ |
MatrixDiagPartV3 <T> | ส่งกลับส่วนเส้นทแยงมุมแบบแบทช์ของเทนเซอร์แบบแบทช์ |
MatrixDiagV2 <T> | ส่งกลับเทนเซอร์แนวทแยงแบบแบทช์พร้อมค่าแนวทแยงแบบแบทช์ที่กำหนด |
MatrixDiagV3 <T> | ส่งกลับเทนเซอร์แนวทแยงแบบแบทช์พร้อมค่าแนวทแยงแบบแบทช์ที่กำหนด |
MatrixSetDiagV2 <T> | ส่งกลับเมทริกซ์เทนเซอร์แบบแบทช์พร้อมค่าแนวทแยงแบบแบทช์ใหม่ |
MatrixSetDiagV3 <T> | ส่งกลับเมทริกซ์เทนเซอร์แบบแบทช์พร้อมค่าแนวทแยงแบบแบทช์ใหม่ |
สูงสุด <T> | คำนวณองค์ประกอบสูงสุดในมิติต่างๆ ของเทนเซอร์ |
ชุดข้อมูล MaxIntraOpParallelism | สร้างชุดข้อมูลที่แทนที่ความขนานภายในปฏิบัติการสูงสุด |
ผสาน <T> | ส่งต่อค่าของเทนเซอร์ที่มีอยู่จาก "อินพุต" ไปยัง "เอาต์พุต" |
ขั้นต่ำ <T> | คำนวณองค์ประกอบขั้นต่ำในมิติของเทนเซอร์ |
มิเรอร์แพด <T> | แพดเทนเซอร์ด้วยค่าที่มิเรอร์ |
MirrorPadGrad <T> | การไล่ระดับสีสำหรับ `MirrorPad` op |
MlirPassthroughOp | ล้อมการคำนวณ MLIR ตามอำเภอใจที่แสดงเป็นโมดูลด้วยฟังก์ชัน main() |
มุลโนแนน <T> | ส่งคืนองค์ประกอบ x * y |
ตาราง DenseHashTable ที่เปลี่ยนแปลงได้ | สร้างตารางแฮชว่างที่ใช้เทนเซอร์เป็นที่เก็บสำรอง |
ตารางแฮชที่ไม่แน่นอน | สร้างตารางแฮชที่ว่างเปล่า |
ตารางแฮชที่ผันแปรได้ของเทนเซอร์ | สร้างตารางแฮชที่ว่างเปล่า |
มูเท็กซ์ | สร้างทรัพยากร Mutex ที่สามารถล็อกได้โดย `MutexLock` |
MutexLock | ล็อกทรัพยากร mutex |
NcclAllReduce <T ขยายหมายเลข> | เอาท์พุตเทนเซอร์ที่มีการลดลงในเทนเซอร์อินพุตทั้งหมด |
NcclBroadcast <T ขยายหมายเลข> | ส่ง 'อินพุต' ไปยังอุปกรณ์ทั้งหมดที่เชื่อมต่อกับเอาต์พุต |
NcclReduce <T ขยายหมายเลข> | ลด "อินพุต" จาก "num_devices" โดยใช้ "การลด" ลงในอุปกรณ์เครื่องเดียว |
Ndtri <T ขยายจำนวน> | |
เพื่อนบ้านที่ใกล้ที่สุด | เลือก k ศูนย์กลางที่ใกล้ที่สุดสำหรับแต่ละจุด |
ถัดไปหลังจาก <T ขยายหมายเลข> | ส่งคืนค่าตัวแทนถัดไปของ "x1" ไปในทิศทางของ "x2" ตามองค์ประกอบ |
การวนซ้ำครั้งถัดไป <T> | ทำให้อินพุตพร้อมใช้งานในการวนซ้ำครั้งถัดไป |
ไม่อป | ไม่ทำอะไรเลย |
NonDetermisticInts <U> | สร้างจำนวนเต็มบางส่วนโดยไม่ได้กำหนดไว้ |
NonMaxSuppressionV5 <T ขยายหมายเลข> | เลือกชุดย่อยของกรอบขอบเขตอย่างตะกละตะกลามโดยเรียงลำดับคะแนนจากมากไปหาน้อย การตัดกล่องที่มีจุดตัดกันเกินสหภาพ (IOU) สูงซ้อนทับกับกล่องที่เลือกไว้ก่อนหน้านี้ |
ชุดข้อมูลที่ไม่สามารถซีเรียลไลซ์ได้ | |
วันฮอต <U> | ส่งกลับเทนเซอร์แบบร้อนเดียว |
คนอย่าง <T> | ส่งกลับเทนเซอร์ของวัตถุที่มีรูปร่างและประเภทเดียวกันกับ x |
OptimizeDatasetV2 | สร้างชุดข้อมูลโดยใช้การเพิ่มประสิทธิภาพที่เกี่ยวข้องกับ `input_dataset` |
สั่งซื้อMapClear | Op จะลบองค์ประกอบทั้งหมดในคอนเทนเนอร์ที่อยู่ด้านล่าง |
สั่งซื้อแผนที่ขนาดไม่สมบูรณ์ | Op ส่งคืนจำนวนองค์ประกอบที่ไม่สมบูรณ์ในคอนเทนเนอร์ต้นแบบ |
สั่งซื้อMapPeek | Op ดูค่าที่คีย์ที่ระบุ |
สั่งซื้อMapSize | Op ส่งคืนจำนวนองค์ประกอบในคอนเทนเนอร์ต้นแบบ |
สั่งซื้อMapStage | สเตจ (คีย์, ค่า) ในคอนเทนเนอร์ที่ซ่อนอยู่ซึ่งทำงานเหมือนได้รับคำสั่ง คอนเทนเนอร์ที่เกี่ยวข้อง |
สั่งซื้อแผนที่Unstage | Op ลบและส่งกลับค่าที่เกี่ยวข้องกับคีย์ จากภาชนะที่อยู่ด้านล่าง |
สั่งซื้อMapUnstageNoKey | Op ลบและส่งกลับองค์ประกอบ (key, value) ที่มีขนาดเล็กที่สุด คีย์จากคอนเทนเนอร์ที่ซ่อนอยู่ |
OutfeedDequeue <T> | ดึงข้อมูลเทนเซอร์ตัวเดียวจากเอาท์พุตการคำนวณ |
OutfeedDequeueTuple | ดึงค่าหลายค่าจากเอาท์พุตการคำนวณ |
OutfeedEnqueue | จัดคิวเทนเซอร์บนเอาท์พุตการคำนวณ |
OutfeedEnqueueTuple | จัดคิวค่า Tensor หลายค่าบนเอาท์พุตการคำนวณ |
แพด <T> | แผ่นรองเทนเซอร์ |
ParallelConcat <T> | เชื่อมต่อรายการเทนเซอร์ `N` เข้ากับมิติแรก |
ParallelDynamicStitch <T> | แทรกค่าจากเทนเซอร์ "ข้อมูล" ลงในเทนเซอร์ตัวเดียว |
แยกตัวอย่าง DatasetV2 | แปลง `input_dataset` ที่มีโปรโต 'ตัวอย่าง' เป็นเวกเตอร์ของ DT_STRING ให้เป็นชุดข้อมูลของวัตถุ 'Tensor' หรือ 'SparseTensor' ที่แสดงถึงคุณลักษณะที่แยกวิเคราะห์ |
แยกตัวอย่างV2 | แปลงเวกเตอร์ของโปรโตส tf.Example (เป็นสตริง) เป็นเทนเซอร์ที่พิมพ์ |
ParseSequenceตัวอย่างV2 | แปลงเวกเตอร์ของโปรโตส tf.io.SequenceExample (เป็นสตริง) เป็นเทนเซอร์ที่พิมพ์ |
ตัวยึดตำแหน่ง <T> | ตัวยึดตำแหน่งใช้สำหรับค่าที่จะป้อนเข้าสู่การคำนวณ |
ตัวยึดตำแหน่งด้วยค่าเริ่มต้น <T> | ตัวยึดตำแหน่งที่ส่งผ่าน "อินพุต" เมื่อไม่ได้ป้อนเอาต์พุต |
พรีลิเนียร์ | op ที่ทำให้ค่าเทนเซอร์หนึ่งค่าเป็นเส้นตรงไปจนถึงเทนเซอร์ตัวแปรทึบแสง |
พรีลิเนียร์ไรซ์Tuple | op ที่ทำให้ค่าเทนเซอร์หลายค่าเป็นเส้นตรงให้เป็นเทนเซอร์ตัวแปรทึบแสง |
ดั้งเดิมOp | คลาสพื้นฐานสำหรับการใช้งาน Op ที่ได้รับการสนับสนุนโดย Operation เดียว |
พิมพ์ | พิมพ์สเกลาร์สตริง |
ชุดข้อมูล ThreadPool ส่วนตัว | สร้างชุดข้อมูลที่ใช้พูลเธรดที่กำหนดเองเพื่อคำนวณ `input_dataset` |
ผลิตภัณฑ์ <T> | คำนวณผลคูณขององค์ประกอบตามมิติของเทนเซอร์ |
QuantizedConcat <T> | เชื่อมต่อเทนเซอร์เชิงปริมาณเข้าด้วยกันในมิติเดียว |
QuantizedConv2DAndRelu <V> | |
QuantizedConv2DAndReluAndRequantize <V> | |
QuantizedConv2DAndRequantize <V> | |
QuantizedConv2DPerChannel <V> | คำนวณ QuantizedConv2D ต่อช่องสัญญาณ |
QuantizedConv2Dด้วยอคติ <V> | |
QuantizedConv2DWithBiasAndRelu <V> | |
QuantizedConv2DWithBiasAndReluAndRequantize <W> | |
QuantizedConv2DWithBiasAndRequantize <W> | |
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize <X> | |
QuantizedConv2DWithBiasSumAndRelu <V> | |
QuantizedConv2DWithBiasSumAndReluAndRequantize <X> | |
QuantizedDepthwiseConv2D <V> | คำนวณ Conv2D ในเชิงลึกเชิงปริมาณ |
QuantizedDepthwiseConv2DWithBias <V> | คำนวณ Conv2D ในเชิงลึกเชิงปริมาณด้วย Bias |
QuantizedDepthwiseConv2DWithBiasAndRelu <V> | คำนวณ Conv2D ในเชิงลึกเชิงปริมาณด้วย Bias และ Relu |
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize <W> | คำนวณ Conv2D ในเชิงลึกเชิงปริมาณด้วย Bias, Relu และ Requantize |
QuantizedMatMulWithBias <W> | ดำเนินการคูณเมทริกซ์เชิงปริมาณของ `a` ด้วยเมทริกซ์ `b` พร้อมบวกอคติ |
QuantizedMatMulWithBiasAndDequantize <W ขยายหมายเลข> | |
QuantizedMatMulWithBiasAndRelu <V> | ทำการคูณเมทริกซ์เชิงปริมาณของ `a` ด้วยเมทริกซ์ `b` โดยมีการรวมอคติบวกและรีลู |
QuantizedMatMulWithBiasAndReluAndRequantize <W> | ดำเนินการคูณเมทริกซ์เชิงปริมาณของ `a` ด้วยเมทริกซ์ `b` โดยมีอคติบวกและ relu และกำหนดปริมาณฟิวชั่นใหม่ |
QuantizedMatMulWithBiasAndRequantize <W> | |
QuantizedReshape <T> | ปรับรูปร่างเทนเซอร์เชิงปริมาณตามตัวเลือก Reshape |
RaggedBincount <U ขยายหมายเลข> | นับจำนวนครั้งของแต่ละค่าในอาร์เรย์จำนวนเต็ม |
RaggedCountSparseOutput <U ขยายหมายเลข> | ดำเนินการนับถังเอาท์พุตแบบกระจัดกระจายสำหรับอินพุตเทนเซอร์ที่ขาดหาย |
RaggedCross <T, U ขยายหมายเลข> | สร้างคุณลักษณะที่ตัดกันจากรายการเทนเซอร์ และส่งกลับเป็น RaggedTensor |
RaggedGather <T ขยายหมายเลข U> | รวบรวมส่วนที่ขาดจากแกน `params` `0` ตาม `ดัชนี` |
RaggedRange <U ขยายหมายเลข T ขยายหมายเลข> | ส่งกลับ `RaggedTensor` ที่มีลำดับตัวเลขที่ระบุ |
RaggedTensorFromVariant <U ขยายหมายเลข T> | ถอดรหัสเทนเซอร์ "ตัวแปร" เป็น "RaggedTensor" |
RaggedTensorToSparse <U> | แปลง `RaggedTensor` ให้เป็น `SparseTensor` ที่มีค่าเดียวกัน |
RaggedTensorToTensor <U> | สร้างเทนเซอร์ที่มีความหนาแน่นสูงจากเทนเซอร์ที่ขาดๆ หายๆ ซึ่งอาจมีการเปลี่ยนแปลงรูปร่างได้ |
RaggedTensorToVariant | เข้ารหัส `RaggedTensor` เป็นเทนเซอร์ 'ตัวแปร' |
ช่วง <T ขยายหมายเลข> | สร้างลำดับของตัวเลข |
อันดับ | ส่งกลับอันดับของเทนเซอร์ |
ReadVariableOp <T> | อ่านค่าของตัวแปร |
รีแบทช์ชุดข้อมูล | สร้างชุดข้อมูลที่เปลี่ยนขนาดแบตช์ |
รีแบทช์ DatasetV2 | สร้างชุดข้อมูลที่เปลี่ยนขนาดแบตช์ |
รับ <T> | รับเทนเซอร์ที่มีชื่อจาก send_device บน recv_device |
RecvTPUEmbeddingActivations | ปฏิบัติการที่ได้รับการเปิดใช้งานการฝังบน TPU |
ลดทั้งหมด | คำนวณ "ตรรกะและ" ขององค์ประกอบในมิติต่างๆ ของเทนเซอร์ |
ลดใดๆ | คำนวณ "ตรรกะหรือ" ขององค์ประกอบในมิติต่างๆ ของเทนเซอร์ |
ลดสูงสุด <T> | คำนวณองค์ประกอบสูงสุดในมิติต่างๆ ของเทนเซอร์ |
ลดขั้นต่ำ <T> | คำนวณองค์ประกอบขั้นต่ำในมิติของเทนเซอร์ |
ลดผลผลิต <T> | คำนวณผลคูณขององค์ประกอบตามมิติของเทนเซอร์ |
ลดผลรวม <T> | คำนวณผลรวมขององค์ประกอบในมิติของเทนเซอร์ |
อ้างอิง <T> | สร้างหรือค้นหาเฟรมย่อย และทำให้ 'ข้อมูล' พร้อมใช้งานสำหรับเฟรมย่อย |
อ้างอิงทางออก <T> | ออกจากเฟรมปัจจุบันไปยังเฟรมหลัก |
การระบุตัวตน <T> | ส่งคืนค่าเทนเซอร์อ้างอิงเดียวกันกับเทนเซอร์อ้างอิงอินพุต |
อ้างอิงการรวม <T> | ส่งต่อค่าของเทนเซอร์ที่มีอยู่จาก "อินพุต" ไปยัง "เอาต์พุต" |
RefNextIteration <T> | ทำให้อินพุตพร้อมใช้งานในการวนซ้ำครั้งถัดไป |
อ้างอิงเลือก <T> | ส่งต่อ "องค์ประกอบดัชนี" ของ "อินพุต" ไปยัง "เอาต์พุต" |
RefSwitch <T> | ส่งต่อเทนเซอร์อ้างอิง `data` ไปยังพอร์ตเอาต์พุตที่กำหนดโดย `pred` |
ลงทะเบียนชุดข้อมูล | ลงทะเบียนชุดข้อมูลกับบริการ tf.data |
RemoteFusedGraphExecute | ดำเนินการกราฟย่อยบนโปรเซสเซอร์ระยะไกล |
RequantizationRangePerChannel | คำนวณช่วงการจัดปริมาณใหม่ต่อช่องสัญญาณ |
RequantizePerChannel <U> | จัดปริมาณอินพุตใหม่ด้วยค่าต่ำสุดและสูงสุดที่ทราบต่อช่องสัญญาณ |
ปรับรูปร่างใหม่ <T> | เปลี่ยนรูปร่างเทนเซอร์ |
ResourceAccumulatorApplyGradient | ใช้การไล่ระดับสีกับตัวสะสมที่กำหนด |
ResourceAccumulatorNumสะสม | ส่งกลับจำนวนการไล่ระดับสีที่รวมอยู่ในตัวสะสมที่กำหนด |
ResourceAccumulatorSetGlobalStep | อัพเดตตัวสะสมด้วยค่าใหม่สำหรับ global_step |
ResourceAccumulatorTakeGradient <T> | แยกการไล่ระดับสีเฉลี่ยใน ConditionalAccumulator ที่กำหนด |
ResourceApplyAdagradV2 | อัปเดต '*var' ตามรูปแบบ adagrad |
ResourceApplyAdamWithAmsgrad | อัปเดต '*var' ตามอัลกอริทึมของ Adam |
ทรัพยากรใช้KerasMomentum | อัปเดต '*var' ตามรูปแบบโมเมนตัม |
ทรัพยากรแบบมีเงื่อนไขสะสม | ตัวสะสมแบบมีเงื่อนไขสำหรับการรวมการไล่ระดับสี |
ResourceCountUpTo <T ขยายหมายเลข> | เพิ่มตัวแปรที่ชี้ตาม 'ทรัพยากร' จนกว่าจะถึง 'ขีดจำกัด' |
ResourceGather <U> | รวบรวมชิ้นส่วนจากตัวแปรที่ชี้ไปตาม 'ทรัพยากร' ตาม 'ดัชนี' |
ResourceGatherNd <U> | |
ResourceScatterAdd | เพิ่มการอัปเดตแบบกระจัดกระจายให้กับตัวแปรที่อ้างอิงโดย "ทรัพยากร" |
ResourceScatterDiv | แบ่งการอัปเดตแบบกระจัดกระจายออกเป็นตัวแปรที่อ้างอิงโดย "ทรัพยากร" |
ResourceScatterMax | ลดการอัปเดตแบบกระจัดกระจายลงในตัวแปรที่อ้างอิงโดย "ทรัพยากร" โดยใช้การดำเนินการ "สูงสุด" |
ResourceScatterMin | ลดการอัปเดตแบบกระจัดกระจายในตัวแปรที่อ้างอิงโดย "ทรัพยากร" โดยใช้การดำเนินการ "ขั้นต่ำ" |
ResourceScatterMul | คูณการอัปเดตแบบกระจัดกระจายลงในตัวแปรที่อ้างอิงโดย "ทรัพยากร" |
ResourceScatterNdAdd | ใช้การเพิ่มเติมแบบกระจายกับแต่ละค่าหรือส่วนต่างๆ ในตัวแปร |
ResourceScatterNdMax | |
ResourceScatterNdMin | |
ResourceScatterNdSub | ใช้การลบแบบกระจายกับแต่ละค่าหรือส่วนต่างๆ ในตัวแปร |
ResourceScatterNdอัปเดต | ใช้ "การอัปเดต" แบบกระจัดกระจายกับแต่ละค่าหรือส่วนต่างๆ ภายในที่กำหนด แปรผันตาม 'ดัชนี' |
ResourceScatterย่อย | ลบการอัปเดตแบบกระจัดกระจายออกจากตัวแปรที่อ้างอิงโดย "ทรัพยากร" |
ResourceScatterอัปเดต | กำหนดการอัปเดตแบบกระจัดกระจายให้กับตัวแปรที่อ้างอิงโดย "ทรัพยากร" |
ทรัพยากรSparseApplyAdagradV2 | อัปเดตรายการที่เกี่ยวข้องใน '*var' และ '*accum' ตามรูปแบบ adagrad |
ทรัพยากรSparseApplyKerasMomentum | อัปเดตรายการที่เกี่ยวข้องใน '*var' และ '*accum' ตามรูปแบบโมเมนตัม |
Resourcestridedsliceassign | กำหนด `value` ให้กับการอ้างอิง l-value ที่หั่นบาง ๆ ของ` ref` |
RetrievetPuembeddingAdamparameters | ดึงพารามิเตอร์การฝังอดัม |
RetrievetPuembeddingadamparametersgradaccumdebug | ดึงพารามิเตอร์การฝังอดัมด้วยการสนับสนุนการดีบัก |
RetrievetPuembeddingadadeltaparameters | ดึงพารามิเตอร์การฝัง Adadelta |
RetrievetPuembeddingadadeltaparametersgradaccumdebug | ดึงพารามิเตอร์การฝัง Adadelta ด้วยการสนับสนุนการดีบัก |
RetrievetPuembeddingadadagradparameters | ดึงพารามิเตอร์การฝัง Adagrad |
RetrievetPuembeddingadadagradparametersgradaccumdebug | ดึงพารามิเตอร์การฝัง Adagrad ด้วยการสนับสนุนการดีบัก |
RetrievetPuembeddingCenteredrmspropparameters | ดึงพารามิเตอร์การฝัง RMSPROP เป็นศูนย์กลาง |
RetrievetPuembeddingftrlParameters | ดึงพารามิเตอร์การฝัง FTRL |
RetrievetPuembeddingftrlparametersgradaccumdebug | ดึงพารามิเตอร์การฝัง FTRL ด้วยการสนับสนุนการดีบัก |
RetrievetPuembeddingMdladagradlightParameters | ดึงพารามิเตอร์การฝังแสง Adagrad MDL |
RetrievetPuembeddingmomentumparameters | ดึงพารามิเตอร์การฝังโมเมนตัม |
RetrievetPuembeddingmomentumparametersgradaccumdebug | ดึงพารามิเตอร์การฝังโมเมนตัมด้วยการสนับสนุนการดีบัก |
RetrievetPuembeddingdingdingdingdingdingdingdingDagradParameters | ดึงพารามิเตอร์การฝัง adagrad proximal |
RetrieveetPuembeddingdingdingdingdingdingdingdingdingdingDagradParametersgradaccumdebug | ดึงพารามิเตอร์การฝัง adagrad proximal ด้วยการสนับสนุนการดีบัก |
RetrievetPuembeddingDdingProximalyogiparameters | |
RetrieveetPuembeddingdingdingdingdingdingdingdingderingaLyogiparametersgradaccumdebug | |
RetrievetPuembeddingrmspropparameters | ดึงพารามิเตอร์การฝัง RMSPROP |
RetrievetPuembeddingrmspropparametersgradaccumdebug | ดึงพารามิเตอร์การฝัง RMSPROP ด้วยการสนับสนุนการดีบัก |
RetrievetPuembeddingStochasticGradientDescentParameters | ดึงพารามิเตอร์การฝัง SGD |
RetrievetPuembeddingStochasticGradientDescentParametersgradaccumdebug | ดึงพารามิเตอร์การฝัง SGD ด้วยการสนับสนุนการดีบัก |
ย้อนกลับ <t> | ย้อนกลับมิติที่เฉพาะเจาะจงของเทนเซอร์ |
Reversesequence <T> | ย้อนกลับชิ้นความยาวตัวแปร |
rngskip | เลื่อนเคาน์เตอร์ของ RNG ที่ใช้เคาน์เตอร์ |
ม้วน <t> | ม้วนองค์ประกอบของเทนเซอร์ตามแกน |
RPC | ดำเนินการแบทช์ของคำขอ RPC |
SamplingDataset | สร้างชุดข้อมูลที่ใช้ตัวอย่าง Bernoulli ของเนื้อหาของชุดข้อมูลอื่น |
scaleandtranslate | |
scaleandtranslategrad <t ขยายหมายเลข> | |
scatteradd <t> | เพิ่มการอัปเดตแบบเบาบางลงในการอ้างอิงตัวแปร |
scatterdiv <t> | แบ่งการอ้างอิงตัวแปรโดยการอัปเดตแบบกระจัดกระจาย |
scattermax <t ขยายจำนวน> | ลดการอัปเดตแบบเบาบางลงในการอ้างอิงตัวแปรโดยใช้การดำเนินการ `max` |
scattermin <t ขยายจำนวน> | ลดการอัปเดตแบบเบาบางลงในการอ้างอิงตัวแปรโดยใช้การดำเนินการ `min` |
scattermul <t> | ทวีคูณการอัพเดทกระจัดกระจายเป็นข้อมูลอ้างอิงตัวแปร |
scatternd <u> | Scatter `updates` เป็นเทนเซอร์ใหม่ตาม 'ดัชนี' |
scatterndadd <t> | ใช้การเพิ่มอย่างกระจัดกระจายกับค่าแต่ละค่าหรือชิ้นในตัวแปร |
scatterndmax <t> | คำนวณค่าสูงสุดองค์ประกอบที่ชาญฉลาด |
scatterndmin <t> | คำนวณขั้นต่ำองค์ประกอบที่ชาญฉลาด |
scatterndnonaliasingadd <t> | ใช้การเพิ่มอย่างกระจัดกระจายกับ `อินพุต 'โดยใช้ค่าแต่ละค่าหรือชิ้นส่วน จาก `update 'ตามดัชนี` ดัชนี' |
scatterndsub <t> | ใช้การลบแบบเบาบางกับค่าแต่ละค่าหรือชิ้นในตัวแปร |
scatterndupdate <t> | ใช้เบาบาง `การอัปเดต 'กับค่าแต่ละค่าหรือชิ้นภายในที่กำหนด ตัวแปรตาม `ดัชนี ' |
Scattersub <T> | ลบการอัพเดทอย่างกระจัดกระจายเป็นข้อมูลอ้างอิงตัวแปร |
scatterupdate <t> | ใช้การอัพเดทแบบเบาบางกับการอ้างอิงตัวแปร |
Selectv2 <t> | |
ส่ง | ส่งเทนเซอร์ชื่อจาก send_device ไปยัง recv_device |
sendtpuembeddinggradients | ทำการอัปเดตการไล่ระดับสีของตารางการฝัง |
setdiff1d <t, u ขยายหมายเลข> | คำนวณความแตกต่างระหว่างสองรายการของตัวเลขหรือสตริง |
การตั้งค่า | จำนวนองค์ประกอบที่ไม่ซ้ำกันตามมิติสุดท้ายของอินพุต `set ' |
รูปร่าง <u ขยายจำนวน> | ส่งคืนรูปร่างของเทนเซอร์ |
shapen <u ขยายจำนวน> | ส่งคืนรูปร่างของเทนเซอร์ |
ชาร์ดดาสเซต | สร้างชุดข้อมูล `` ที่มีเพียง 1/`num_shards 'ของชุดข้อมูลนี้ |
ShuffleAnDrepeatDatasetv2 | |
shuffledatasetv2 | |
shuffledatasetv3 | |
shutdowndistributedtpu | ปิดระบบ TPU แบบกระจายที่ทำงานอยู่ |
ขนาด <u ขยายจำนวน> | ส่งคืนขนาดของเทนเซอร์ |
Skipgram | แยกวิเคราะห์ไฟล์ข้อความและสร้างชุดตัวอย่าง |
การนอนหลับ | |
Slice <T> | ส่งคืนชิ้นจาก 'อินพุต' |
SlidingWindowDataset | สร้างชุดข้อมูลที่ผ่านหน้าต่างเลื่อนผ่าน `input_dataset` |
Snapshot <T> | ส่งคืนสำเนาของเทนเซอร์อินพุต |
SnapshotDataset | สร้างชุดข้อมูลที่จะเขียน / อ่านจากสแน็ปช็อต |
SOBOLSAMPLE <T ขยายหมายเลข> | สร้างคะแนนจากลำดับ SOBOL |
Spacetobatchnd <T> | Spacetobatch สำหรับ ND Tensors ของ Type T. |
sparseapplyadagradv2 <t> | อัปเดตรายการที่เกี่ยวข้องใน '*var' และ '*accum' ตามรูปแบบ Adagrad |
Finsebincount <u ขยายจำนวน> | นับจำนวนการเกิดขึ้นของแต่ละค่าในอาร์เรย์จำนวนเต็ม |
sparsecountsparseOutput <U ขยายหมายเลข> | ดำเนินการนับถังขยะที่กระจัดกระจายสำหรับอินพุตเทนเซอร์เบาบาง |
sparsecrosshashashed | สร้างการข้ามกระจัดกระจายจากรายการของเทนเซอร์ที่กระจัดกระจายและหนาแน่น |
sparsecrossv2 | สร้างการข้ามกระจัดกระจายจากรายการของเทนเซอร์ที่กระจัดกระจายและหนาแน่น |
Sparsematrixadd | การเพิ่มเมทริกซ์ CSR สองตัวที่กระจัดกระจาย c = alpha * a + beta * B. |
Sparsematrixmatmul <t> | เมทริกซ์-มัลติเพลี่เมทริกซ์เบาบางพร้อมเมทริกซ์หนาแน่น |
Sparsematrixmul | การคูณองค์ประกอบที่ชาญฉลาดของเมทริกซ์เบาบางที่มีเทนเซอร์หนาแน่น |
sparsematrixnnz | ส่งคืนจำนวน nonzeroes ของ `sparse_matrix` |
sparsematrixorderingamd | คำนวณการสั่งซื้อระดับต่ำสุดโดยประมาณ (AMD) ของ `อินพุต ' |
SparseMatrixSoftMax | คำนวณ softmax ของ csrsparsematrix |
SparsematrixsoftMaxGrad | คำนวณการไล่ระดับสีของ sparsematrixsoftmax op |
SparseMatrixsparsecholesky | คำนวณการสลายตัวของ cholesky เบาบางของ `อินพุต ' |
Sparsematrixsparsematmul | เมทริกซ์ CSR สองเมทริกซ์ขนาดเล็กเมทริกซ์ `a` และ` b` |
Sparsematrixtranspose | เปลี่ยนมิติภายใน (เมทริกซ์) ของ csrsparsematrix |
Sparsematrixzeros | สร้าง All-Zeros Csrsparsematrix ด้วยรูปร่าง `Dense_shape` |
sparsetensortocsrsparsematrix | แปลง sparsetensor เป็น (อาจเป็นชุด) csrsparsematrix |
Spence <t ขยายหมายเลข> | |
แยก <t> | แยกเทนเซอร์ออกเป็นเทนเซอร์ `num_split` ตามมิติเดียว |
Splitv <t> | แยกเทนเซอร์ออกเป็นเทนเซอร์ `num_split` ตามมิติเดียว |
บีบ <t> | ลบขนาดของขนาด 1 ออกจากรูปร่างของเทนเซอร์ |
สแต็ค <t> | แพ็ครายการของ `n` road-` `r` เทนเซอร์ลงในหนึ่งอันดับ-'(r+1)` เทนเซอร์ |
เวที | ค่าเวทีคล้ายกับ enqueue ที่มีน้ำหนักเบา |
stageclear | OP ลบองค์ประกอบทั้งหมดในคอนเทนเนอร์พื้นฐาน |
stagepeek | OP Peeks ที่ค่าที่ดัชนีที่ระบุ |
ทำให้เป็นระยะ | OP ส่งคืนจำนวนองค์ประกอบในคอนเทนเนอร์พื้นฐาน |
StatefulRandombinomial <V ขยายจำนวน> | |
statefulstandardnormal <u> | เอาต์พุตค่าสุ่มจากการแจกแจงปกติ |
statefulstandardnormalv2 <u> | เอาต์พุตค่าสุ่มจากการแจกแจงปกติ |
statefultruncatednormal <u> | เอาต์พุตค่าสุ่มจากการแจกแจงปกติที่ถูกตัดทอน |
statefuluniform <u> | เอาต์พุตค่าสุ่มจากการแจกแจงแบบสม่ำเสมอ |
statefuluniformfullint <u> | เอาต์พุตจำนวนเต็มสุ่มจากการแจกแจงแบบสม่ำเสมอ |
statefuluniformint <u> | เอาต์พุตจำนวนเต็มสุ่มจากการแจกแจงแบบสม่ำเสมอ |
StatelessParameterizedTruncatedNormal <V ขยายจำนวน> | |
StatelessRandombinomial <W ขยายหมายเลข> | เอาท์พุทตัวเลขสุ่มที่กำหนดจากการแจกแจงแบบทวินาม |
StatelessRandomGammav2 <V ขยายหมายเลข> | เอาต์พุตตัวเลขสุ่มที่กำหนดจากการแจกแจงแกมม่า |
StatelessRandompoisson <W ขยายหมายเลข> | เอาท์พุทตัวเลขสุ่มที่กำหนดจากการแจกแจงปัวซอง |
StatelessRandomuniformfullint <V ขยายหมายเลข> | เอาท์พุทที่กำหนดค่าเทียมแบบสุ่มจากการแจกแจงแบบสม่ำเสมอ |
Statelesssampledistortedboundingbox <t ขยายหมายเลข> | สร้างกล่องขอบเขตที่บิดเบี้ยวแบบสุ่มสำหรับภาพที่กำหนด |
StatsaggregatorHandlev2 | |
StatSaggRatorSetSummaryWriter | ตั้งค่า summary_writer_interface เพื่อบันทึกสถิติโดยใช้ Stats_aggregator ที่กำหนด |
stopgradient <t> | หยุดการคำนวณการไล่ระดับสี |
StridedSlice <T> | ส่งคืนชิ้นที่มีความโดดเด่นจาก `อินพุต ' |
Stredsliceassign <t> | กำหนด `value` ให้กับการอ้างอิง l-value ที่หั่นบาง ๆ ของ` ref` |
StredsliceGrad <U> | ส่งคืนการไล่ระดับสีของ `stretedslice ' |
เครื่องสาย | แปลงอักขระตัวพิมพ์ใหญ่ทั้งหมดให้เป็นตัวพิมพ์เล็กที่เกี่ยวข้อง |
Stringngrams <t ขยายหมายเลข> | สร้าง ngrams จากข้อมูลสตริงที่ขาด |
เครื่องเชือก | แปลงอักขระตัวพิมพ์เล็กทั้งหมดให้เป็นตัวพิมพ์ใหญ่ที่เกี่ยวข้อง |
รวม <t> | คำนวณผลรวมขององค์ประกอบในมิติของเทนเซอร์ |
switchcond <t> | ส่งต่อ `data 'ไปยังพอร์ตเอาต์พุตที่กำหนดโดย` pred` |
tpucompilationResult | ส่งคืนผลลัพธ์ของการรวบรวม TPU |
tpucompilesucceededAssert | ยืนยันว่าการรวบรวมประสบความสำเร็จ |
tpuembeddingactive | OP เปิดใช้งานการแยก TPU ฝังตัว |
tpuexecute | OP ที่โหลดและดำเนินการโปรแกรม TPU บนอุปกรณ์ TPU |
tpuexecuteandeandupdatevariables | OP ที่ดำเนินการโปรแกรมที่มีการอัปเดตตัวแปรในสถานที่เสริม |
TPUORDINALSELECTOR | ตัวเลือกหลักของ TPU |
tpupartitionedInput <t> | OP ที่จัดกลุ่มรายการอินพุตที่แบ่งพาร์ติชันเข้าด้วยกัน |
tpupartitionedOutput <t> | op ที่ demultiplexes เทนเซอร์ที่จะถูกทำลายโดย XLA ไปยังรายการของการแบ่งพาร์ติชัน เอาต์พุตนอกการคำนวณ XLA |
tpureplicateMetadata | ข้อมูลเมตาระบุว่าการคำนวณ TPU ควรทำซ้ำอย่างไร |
tpureplicatedInput <t> | เชื่อมต่ออินพุต N กับการคำนวณ TPU ที่ทำซ้ำ N-Way |
tpureplicatedOutput <t> | เชื่อมต่อเอาต์พุต N จากการคำนวณ TPU ที่ทำซ้ำ N-way |
ชั่วคราว <t> | ส่งคืนเทนเซอร์ที่อาจกลายพันธุ์ แต่ยังคงอยู่ในขั้นตอนเดียวเท่านั้น |
เทนโซโรเรย์ | อาร์เรย์ของขนาดที่กำหนด |
Tensorarrayclose | ลบ Tensorarray ออกจากคอนเทนเนอร์ทรัพยากร |
tensorarrayconcat <t> | เชื่อมต่อองค์ประกอบจาก tensorarray เป็นค่า `value ' |
Tensorarraygather <T> | รวบรวมองค์ประกอบเฉพาะจาก tensorarray เป็นเอาต์พุต `value ' |
Tensorarraygrad | สร้าง tensorarray สำหรับการจัดเก็บการไล่ระดับสีของค่าในที่จับที่กำหนด |
TensorarraygradwithShape | สร้าง tensorarray สำหรับการจัดเก็บการไล่ระดับสีหลายค่าในด้ามจับที่กำหนด |
Tensorarraypack <T> | |
TensorArrayread <T> | อ่านองค์ประกอบจาก tensorarray ลงในเอาต์พุต `value ' |
Tensorarrayscatter | กระจายข้อมูลจากค่าอินพุตลงในองค์ประกอบ tensorarray ที่เฉพาะเจาะจง |
เทนโซโรเรย์ | รับขนาดปัจจุบันของ tensorarray |
tensorarraysplit | แยกข้อมูลออกจากค่าอินพุตเป็นองค์ประกอบ tensorarray |
Tensorarrayunpack | |
tensorarraywrite | ผลักองค์ประกอบลงบน tensor_array |
TensorForestCreateTreevariable | สร้างทรัพยากรต้นไม้และส่งคืนด้ามจับ |
TensorForestTreedeserialize | deserializes โปรโตลงในที่จับต้นไม้ |
tensoresttreeisinitializedop | ตรวจสอบว่าต้นไม้ได้รับการเริ่มต้นหรือไม่ |
TensorForestTreePredict | เอาต์พุตบันทึกสำหรับข้อมูลอินพุตที่กำหนด |
TensorestTreeresourceHandleop | สร้างที่จับไปยัง TensorForestTreerEsource |
TensorForestTreeserialize | ทำให้ด้ามจับต้นไม้เป็นแบบต่อเนื่องเป็นโปรโต |
TensorForestTreesize | รับจำนวนโหนดในต้นไม้ |
tensorlistconcat <t> | เชื่อมโยงเทนเซอร์ทั้งหมดในรายการตามมิติที่ 0 |
Tensorlistconcatlists | |
tensorlistconcatv2 <u> | เชื่อมโยงเทนเซอร์ทั้งหมดในรายการตามมิติที่ 0 |
TensorlistelementShape <T ขยายหมายเลข> | รูปร่างขององค์ประกอบของรายการที่กำหนดเป็นเทนเซอร์ |
Tensorlistfromtensor | สร้าง tensorlist ซึ่งเมื่อซ้อนกันมีค่าของ `tensor ' |
Tensorlistgather <T> | สร้างเทนเซอร์โดยการจัดทำดัชนีลงในเทนซอร์ลิสต์ |
TensorlistGetItem <T> | |
Tensorlistlistlength | ส่งคืนจำนวนเทนเซอร์ในรายการเทนเซอร์อินพุต |
Tensorlistpopback <T> | ส่งคืนองค์ประกอบสุดท้ายของรายการอินพุตรวมถึงรายการที่มีทั้งหมดยกเว้นองค์ประกอบนั้น |
Tensorlistpushback | ส่งคืนรายการที่มีการส่งผ่าน `tensor` เป็นองค์ประกอบสุดท้ายและองค์ประกอบอื่น ๆ ของรายการที่กำหนดใน` input_handle` |
Tensorlistpushbackbatch | |
TensorListreserve | รายการขนาดที่กำหนดด้วยองค์ประกอบที่ว่างเปล่า |
TensorListresize | ปรับขนาดรายการ |
Tensorlistscatter | สร้างเทนเซอร์ลิสต์โดยการจัดทำดัชนีลงในเทนเซอร์ |
TensorlistscatterintoexistingList | Scatters Tensor ที่ดัชนีในรายการอินพุต |
tensorlistscatterv2 | สร้างเทนเซอร์ลิสต์โดยการจัดทำดัชนีลงในเทนเซอร์ |
Tensorlistsetitem | |
tensorlistsplit | แยกเทนเซอร์ออกเป็นรายการ |
TensorlistStack <T> | สแต็คเทนเซอร์ทั้งหมดในรายการ |
Tensormaperase <u> | ส่งคืนแผนที่เทนเซอร์พร้อมรายการจากคีย์ที่ถูกลบ |
Tensormaphaskey | ส่งคืนไม่ว่าจะมีคีย์ที่กำหนดอยู่ในแผนที่หรือไม่ |
TensormapInsert | ส่งคืนแผนที่ที่เป็น 'input_handle' ด้วยการแทรกคู่คีย์-ค่าที่กำหนด |
Tensormaplookup <u> | ส่งคืนค่าจากคีย์ที่กำหนดในแผนที่เทนเซอร์ |
Tensormapsize | ส่งคืนจำนวนเทนเซอร์ในแผนที่เทนเซอร์อินพุต |
Tensorscatteradd <T> | เพิ่มการอัพเดท sparse `'ลงในเทนเซอร์ที่มีอยู่ตาม' ดัชนี ' |
tensorscattermax <t> | |
Tensorscattermin <T> | |
tensorscattersub <t> | ลบการอัพเดท `การอัปเดต 'จากเทนเซอร์ที่มีอยู่ตาม' ดัชนี ' |
TensorscatterUpdate <T> | Scatter `updates` ลงในเทนเซอร์ที่มีอยู่ตาม 'ดัชนี' |
TensorStridedSliceUpdate <T> | กำหนดค่า `value` ให้กับการอ้างอิง L-value ที่หั่นเป็นจำนวนมากของ` อินพุต ' |
Threadpooldataset | สร้างชุดข้อมูลที่ใช้พูลเธรดที่กำหนดเองเพื่อคำนวณ `input_dataset` |
Threadpoolhandle | สร้างชุดข้อมูลที่ใช้พูลเธรดที่กำหนดเองเพื่อคำนวณ `input_dataset` |
กระเบื้อง <t> | สร้างเทนเซอร์โดยการปูกระเบื้องเทนเซอร์ที่กำหนด |
การประทับเวลา | ให้เวลาตั้งแต่ยุคในไม่กี่วินาที |
ยาสูบ | แปลงเทนเซอร์เป็นภาคใต้สเกลาร์ |
topkunique | ส่งคืนค่าที่ไม่ซ้ำกันของ TOPK ในอาร์เรย์ตามลำดับที่เรียงลำดับ |
topkwithunique | ส่งคืนค่า TOPK ในอาร์เรย์ตามลำดับที่เรียงลำดับ |
tridiagonalmatmul <t> | คำนวณผลิตภัณฑ์ด้วยเมทริกซ์ tridiagonal |
tridiagonalsolve <t> | แก้ระบบ tridiagonal ของสมการ |
tryrpc | ดำเนินการแบทช์ของคำขอ RPC |
unbatch <t> | ย้อนกลับการทำงานของแบทช์สำหรับเทนเซอร์เอาต์พุตเดี่ยว |
unbatchgrad <t> | การไล่ระดับสีของ Unbatch |
การคลายความรู้สึก | ไม่บีบอัดองค์ประกอบชุดข้อมูลที่บีบอัด |
unicodeDecode <t ขยายหมายเลข> | ถอดรหัสแต่ละสตริงใน `input` เป็นลำดับของจุดรหัส Unicode |
unicodeencode | เข้ารหัสเทนเซอร์ของ INTs ลงในสตริง Unicode |
ไม่ซ้ำใคร <t, v ขยายจำนวน> | ค้นหาองค์ประกอบที่เป็นเอกลักษณ์ตามแกนของเทนเซอร์ |
ไม่รวม | สร้างชุดข้อมูลที่มีองค์ประกอบเฉพาะของ `input_dataset` |
UniquewithCounts <T, V ขยายจำนวน> | ค้นหาองค์ประกอบที่เป็นเอกลักษณ์ตามแกนของเทนเซอร์ |
Unravelindex <t ขยายหมายเลข> | แปลงอาร์เรย์ของดัชนีแบนให้กลายเป็นอาร์เรย์พิกัด |
unsortsegmentjoin | เข้าร่วมองค์ประกอบของ `อินพุต 'ตาม` segment_ids' |
unstack <t> | คลายมิติที่กำหนดของเทนเซอร์อันดับ `r` ลงใน` num` road-`(r-1)` เทนเซอร์ |
ไม่แน่นอน | OP คล้ายกับ dequeue ที่มีน้ำหนักเบา |
UNWRAPDATASETVARIANT | |
Upperbound <U ขยายจำนวน> | ใช้ updux_bound (sorted_search_values, ค่า) ตามแต่ละแถว |
varhandleop | สร้างที่จับไปยังทรัพยากรตัวแปร |
varisinitializedop | ตรวจสอบว่าตัวแปรที่ใช้การจัดการทรัพยากรได้รับการเริ่มต้นหรือไม่ |
ตัวแปร <T> | ถือสถานะในรูปแบบของเทนเซอร์ที่ยังคงอยู่ในขั้นตอน |
VariableShape <t ขยายหมายเลข> | ส่งคืนรูปร่างของตัวแปรที่ชี้ไปที่ `ทรัพยากร ' |
ที่ไหน | ส่งคืนตำแหน่งของค่าที่ไม่ใช่ศูนย์ / จริงในเทนเซอร์ |
โดยที่ 3 <t> | เลือกองค์ประกอบจาก `x` หรือ` y` ขึ้นอยู่กับ 'เงื่อนไข' |
WorkerHeartBeat | Worker Heartbeat Op |
WrapDatasetVariant | |
WriterawProtosummary | เขียนบทสรุปโปรโตที่เป็นอนุกรม |
xlarecvfromhost <t> | OP ที่จะได้รับเทนเซอร์จากโฮสต์ |
xlasendtohost | OP เพื่อส่งเทนเซอร์ไปยังโฮสต์ |
xlog1py <t> | ส่งคืน 0 ถ้า x == 0, และ x * log1p (y) มิฉะนั้น, elementwise |
ศูนย์ <t> | ผู้ประกอบการที่สร้างค่าเริ่มต้นที่เริ่มต้นด้วยศูนย์ของรูปร่างที่กำหนดโดย `dims ' |
Zeroslike <T> | ส่งคืนเทนเซอร์ของศูนย์ที่มีรูปร่างและพิมพ์เท่ากับ x |