Computes the sum along sparse segments of a tensor.
tf.raw_ops.SparseSegmentSumWithNumSegments(
data, indices, segment_ids, num_segments, name=None
)
Like SparseSegmentSum
, but allows missing ids in segment_ids
. If an id is
misisng, the output
tensor at that position will be zeroed.
Read the section on segmentation for an explanation of segments.
For example:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.sparse_segment_sum_with_num_segments(
c, tf.constant([0, 1]), tf.constant([0, 0]), num_segments=3)
# => [[0 0 0 0]
# [0 0 0 0]
# [0 0 0 0]]
tf.sparse_segment_sum_with_num_segments(c,
tf.constant([0, 1]),
tf.constant([0, 2],
num_segments=4))
# => [[ 1 2 3 4]
# [ 0 0 0 0]
# [-1 -2 -3 -4]
# [ 0 0 0 0]]
Args | |
---|---|
data
|
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , int64 , bfloat16 , uint16 , half , uint32 , uint64 .
|
indices
|
A Tensor . Must be one of the following types: int32 , int64 .
A 1-D tensor. Has same rank as segment_ids .
|
segment_ids
|
A Tensor of type int32 .
A 1-D tensor. Values should be sorted and can be repeated.
|
num_segments
|
A Tensor . Must be one of the following types: int32 , int64 .
Should equal the number of distinct segment IDs.
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as data .
|