TensorFlow 1 version | View source on GitHub |
Global average pooling operation for temporal data.
tf.keras.layers.GlobalAveragePooling1D(
data_format='channels_last', **kwargs
)
Examples:
input_shape = (2, 3, 4)
x = tf.random.normal(input_shape)
y = tf.keras.layers.GlobalAveragePooling1D()(x)
print(y.shape)
(2, 4)
Arguments | |
---|---|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps) .
|
Call arguments:
inputs
: A 3D tensor.mask
: Binary tensor of shape(batch_size, steps)
indicating whether a given step should be masked (excluded from the average).
Input shape:
- If
data_format='channels_last'
: 3D tensor with shape:(batch_size, steps, features)
- If
data_format='channels_first'
: 3D tensor with shape:(batch_size, features, steps)
Output shape:
2D tensor with shape (batch_size, features)
.