View source on GitHub |
Initializer that generates the identity matrix.
Inherits From: Initializer
tf.keras.initializers.Identity(
gain=1.0
)
Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized.
Only usable for generating 2D matrices.
Examples:
def make_variable(k, initializer):
return tf.Variable(initializer(shape=[k, k], dtype=tf.float32))
make_variable(2, tf.initializers.Identity())
<tf.Variable ... shape=(2, 2) dtype=float32, numpy=
array([[1., 0.],
[0., 1.]], dtype=float32)>
make_variable(3, tf.initializers.Identity(gain=0.5))
<tf.Variable ... shape=(3, 3) dtype=float32, numpy=
array([[0.5, 0. , 0. ],
[0. , 0.5, 0. ],
[0. , 0. , 0.5]], dtype=float32)>
Args | |
---|---|
gain
|
Multiplicative factor to apply to the identity matrix. |
Methods
from_config
@classmethod
from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args | |
---|---|
config
|
A Python dictionary.
It will typically be the output of get_config .
|
Returns | |
---|---|
An Initializer instance. |
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns | |
---|---|
A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape
|
Shape of the tensor. |
dtype
|
Optional dtype of the tensor. Only floating point types are supported. |
Raises | |
---|---|
ValueError
|
If the dtype is not floating point |
ValueError
|
If the requested shape does not have exactly two axes. |