tf.keras.Sequential

TensorFlow 1 version View source on GitHub

Sequential groups a linear stack of layers into a tf.keras.Model.

Inherits From: Model

Sequential provides training and inference features on this model.

Examples:

# Optionally, the first layer can receive an `input_shape` argument:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8, input_shape=(16,)))
# Afterwards, we do automatic shape inference:
model.add(tf.keras.layers.Dense(4))
# This is identical to the following:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8, input_dim=16))
# And to the following:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8, batch_input_shape=(None, 16)))
# Note that you can also omit the `input_shape` argument.
# In that case the model doesn't have any weights until the first call
# to a training/evaluation method (since it isn't yet built):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(4))
# model.weights not created yet
# Whereas if you specify the input shape, the model gets built
# continuously as you are adding layers:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8, input_shape=(16,)))
model.add(tf.keras.layers.Dense(4))
len(model.weights)
4
# When using the delayed-build pattern (no input shape specified), you can
# choose to manually build your model by calling
# `build(batch_input_shape)`:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(4))
model.build((None, 16))
len(model.weights)
4
# Note that when using the delayed-build pattern (no input shape specified),
# the model gets built the first time you call `fit` (or other training and
# evaluation methods).
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(1))
model.compile(optimizer='sgd', loss='mse')
# This builds the model for the first time:
model.fit(x, y, batch_size=32, epochs=10)

layers Optional list of layers to add to the model.
name Optional name for the model.

distribute_strategy The tf.distribute.Strategy this model was created under.
layers

metrics_names Returns the model's display labels for all outputs.

inputs = tf.keras.layers.Input(shape=(3,))
outputs = tf.keras.layers.Dense(2)(inputs)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer="Adam", loss="mse", metrics=["mae"])
model.metrics_names
[]
x = np.random.random((2, 3))
y = np.random.randint(0, 2, (2, 2))
_ = model.fit(x, y, verbose=0)
model.metrics_names
['loss', 'mae']
inputs = tf.keras.layers.Input(shape=(3,))
d = tf.keras.layers.Dense(2, name='out')
output_1 = d(inputs)
output_2 = d(inputs)
model = tf.keras.models.Model(
   inputs=inputs, outputs=[output_1, output_2])
model.compile(optimizer="Adam", loss="mse", metrics=["mae", "acc"])
_ = model.fit(x, (y, y), verbose=0)
model.metrics_names
['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae',
'out_1_acc']

run_eagerly Settable attribute indicating whether the model should run eagerly.

Running eagerly means that your model will be run step by step, like Python code. Your model might run slower, but it should become easier for you to debug it by stepping into individual layer calls.

By default, we will attempt to compile your model to a static graph to deliver the best execution performance.

state_updates Returns the updates from all layers that are stateful.

This is useful for separating training updates and state updates, e.g. when we need to update a layer's internal state during prediction.

Methods

add

View source

Adds a layer instance on top of the layer stack.

Arguments
layer layer instance.

Raises
TypeError If layer is not a layer instance.
ValueError In case the layer argument does not know its input shape.
ValueError In case the layer argument has multiple output tensors, or is already connected somewhere else (forbidden in Sequential models).

compile

View source

Configures the model for training.

Arguments
optimizer String (name of optimizer) or optimizer instance. See tf.keras.optimizers.
loss String (name of objective function), objective function or tf.keras.losses.Loss instance. See tf.keras.losses. An objective function is any callable with the signature loss = fn(y_true, y_pred), where y_true = ground truth values with shape = [batch_size, d0, .. dN], except sparse loss functions such as sparse categorical crossentropy where shape = [batch_size, d0, .. dN-1]. y_pred = predicted values with shape = [batch_size, d0, .. dN]. It returns a weighted loss float tensor. If a custom Loss instance is used and reduction is set to NONE, return value has the shape [batch_size, d0, .. dN-1] ie. per-sample or per-timestep loss values; otherwise, it is a scalar. If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses.
metrics List of metrics to be evaluated by the model during training and testing. Each of this can be a string (name of a built-in function), function or a tf.keras.metrics.Metric instance. See tf.keras.metrics. Typically you will use metrics=['accuracy']. A function is any callable with the signature result = fn(y_true, y_pred). To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary, such as metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}. You can also pass a list (len = len(outputs)) of lists of metrics such as metrics=[['accuracy'], ['accuracy', 'mse']] or metrics=['accuracy', ['accuracy', 'mse']]. When you pass the strings 'accuracy' or 'acc', we convert this to one of tf.keras.metrics.BinaryAccuracy, tf.keras.metrics.CategoricalAccuracy, tf.keras.metrics.SparseCategoricalAccuracy based on the loss function used and the model output shape. We do a similar conversion for the strings 'crossentropy' and 'ce' as well.
loss_weights Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the weighted sum of all individual losses, weighted by the loss_weights coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a dict, it is expected to map output names (strings) to scalar coefficients.
sample_weight_mode If you need to do timestep-wise sample weighting (2D weights), set this to "temporal". None defaults to sample-wise weights (1D). If the model has multiple outputs, you can use a different sample_weight_mode on each output by passing a dictionary or a list of modes.
weighted_metrics List of metrics to be evaluated and weighted by sample_weight or class_weight during training and testing.
**kwargs Any additional arguments. For eager execution, pass run_eagerly=True.

Raises
ValueError In case of invalid arguments for optimizer, loss, metrics or sample_weight_mode.

evaluate

View source

Returns the loss value & metrics values for the model in test mode.

Computation is done in batches.

Arguments
x Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).

  • A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A tf.data dataset. - A generator or keras.utils.Sequence instance. A more detailed description of unpacking behavior for iterator types (Dataset, generator, Sequence) is given in the Unpacking behavior for iterator-like inputs section of Model.fit.
y Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely). If x is a dataset, generator or keras.utils.Sequence instance, y should not be specified (since targets will be obtained from the iterator/dataset).
batch_size Integer or None. Number of samples per gradient update. If unspecified, batch_size will default to 32. Do not specify the batch_size if your data is in the form of a dataset, generators, or keras.utils.Sequence instances (since they generate batches).
verbose 0 or 1. Verbosity mode. 0 = silent, 1 = progress bar.
sample_weight Optional Numpy array of weights for the test samples, used for weighting the loss function. You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). This argument is not supported when x is a dataset, instead pass sample weights as the third element of x.
steps Integer or None. Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of None. If x is a tf.data dataset and steps is None, 'evaluate' will run until the dataset is exhausted. This argument is not supported with array inputs.
callbacks List of keras.callbacks.Callback instances. List of callbacks to apply during evaluation. See callbacks.
max_queue_size Integer. Used for generator or keras.utils.Sequence input only. Maximum size for the generator queue. If unspecified, max_queue_size will default to 10.
workers Integer. Used for generator or keras.utils.Sequence input only. Maximum number of processes to spin up when using process-based threading. If unspecified, workers will default to 1. If 0, will execute the generator on the main thread.
use_multiprocessing Boolean. Used for generator or keras.utils.Sequence input only. If True, use process-based threading. If unspecified, use_multiprocessing will default to False. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes.
return_dict If True, loss and metric results are returned as a dict, with each key being the name of the metric. If False, they are returned as a list.

See the discussion of Unpacking behavior for iterator-like inputs for Model.fit.

Returns
Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar outputs.

Raises
ValueError in case of invalid arguments.

evaluate_generator

View source

Evaluates the model on a data generator. (deprecated)

DEPRECATED:

Model.evaluate now supports generators, so there is no longer any need to use this endpoint.

fit

View source

Trains the model for a fixed number of epochs (iterations on a dataset).

Arguments
x Input data. It could be:

  • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
  • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
  • A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
  • A tf.data dataset. Should return a tuple of either (inputs, targets) or (inputs, targets, sample_weights).
  • A generator or keras.utils.Sequence returning (inputs, targets) or (inputs, targets, sample_weights). A more detailed description of unpacking behavior for iterator types (Dataset, generator, Sequence) is given below.
y Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely). If x is a dataset, generator, or keras.utils.Sequence instance, y should not be specified (since targets will be obtained from x).
batch_size Integer or None. Number of samples per gradient update. If unspecified, batch_size will default to 32. Do not specify the batch_size if your data is in the form of datasets, generators, or keras.utils.Sequence instances (since they generate batches).
epochs Integer. Number of epochs to train the model. An epoch is an iteration over the entire x and y data provided. Note that in conjunction with initial_epoch, epochs is to be understood as "final epoch". The model is not trained for a number of iterations given by epochs, but merely until the epoch of index epochs is reached.
verbose 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. Note that the progress bar is not particularly useful when logged to a file, so verbose=2 is recommended when not running interactively (eg, in a production environment).
callbacks List of keras.callbacks.Callback instances. List of callbacks to apply during training. See tf.keras.callbacks.
validation_split Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the x and y data provided, before shuffling. This argument is not supported when x is a dataset, generator or keras.utils.Sequence instance.
validation_data Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. validation_data will override validation_split. validation_data could be:
  • tuple (x_val, y_val) of Numpy arrays or tensors
  • tuple (x_val, y_val, val_sample_weights) of Numpy arrays
  • dataset For the first two cases, batch_size must be provided. For the last case, validation_steps could be provided. Note that validation_data does not support all the data types that are supported in x, eg, dict, generator or keras.utils.Sequence.
  • shuffle Boolean (whether to shuffle the training data before each epoch) or str (for 'batch'). This argument is ignored when x is a generator. 'batch' is a special option for dealing with the limitations of HDF5 data; it shuffles in batch-sized chunks. Has no effect when steps_per_epoch is not None.
    class_weight Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). This can be useful to tell the model to "pay more attention" to samples from an under-represented class.
    sample_weight Optional Numpy array of weights for the training samples, used for weighting the loss function (during training only). You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). This argument is not supported when x is a dataset, generator, or keras.utils.Sequence instance, instead provide the sample_weights as the third element of x.
    initial_epoch Integer. Epoch at which to start training (useful for resuming a previous training run).
    steps_per_epoch Integer or None. Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. When training with input tensors such as TensorFlow data tensors, the default None is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot be determined. If x is a tf.data dataset, and 'steps_per_epoch' is None, the epoch will run until the input dataset is exhausted. When passing an infinitely repeating dataset, you must specify the steps_per_epoch argument. This argument is not supported with array inputs.
    validation_steps Only relevant if validation_data is provided and is a tf.data dataset. Total number of steps (batches of samples) to draw before stopping when performing validation at the end of every epoch. If 'validation_steps' is None, validation will run until the validation_data dataset is exhausted. In the case of an infinitely repeated dataset, it will run into an infinite loop. If 'validation_steps' is specified and only part of the dataset will be consumed, the evaluation will start from the beginning of the dataset at each epoch. This ensures that the same validation samples are used every time.
    validation_batch_size Integer or None. Number of samples per validation batch. If unspecified, will default to batch_size. Do not specify the validation_batch_size if your data is in the form of datasets, generators, or keras.utils.Sequence instances (since they generate batches).
    validation_freq Only relevant if validation data is provided. Integer or collections_abc.Container instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. validation_freq=2 runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. validation_freq=[1, 2, 10] runs validation at the end of the 1st, 2nd, and 10th epochs.
    max_queue_size Integer. Used for generator or keras.utils.Sequence input only. Maximum size for the generator queue. If unspecified, max_queue_size will default to 10.
    workers Integer. Used for generator or keras.utils.Sequence input only. Maximum number of processes to spin up when using process-based threading. If unspecified, workers will default to 1. If 0, will execute the generator on the main thread.
    use_multiprocessing Boolean. Used for generator or keras.utils.Sequence input only. If True, use process-based threading. If unspecified, use_multiprocessing will default to False. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes.

    Unpacking behavior for iterator-like inputs: A common pattern is to pass a tf.data.Dataset, generator, or tf.keras.utils.Sequence to the x argument of fit, which will in fact yield not only features (x) but optionally targets (y) and sample weights. Keras requires that the output of such iterator-likes be unambiguous. The iterator should return a tuple of length 1, 2, or 3, where the optional second and third elements will be used for y and sample_weight respectively. Any other type provided will be wrapped in a length one tuple, effectively treating everything as 'x'. When yielding dicts, they should still adhere to the top-level tuple structure. e.g. ({"x0": x0, "x1": x1}, y). Keras will not attempt to separate features, targets, and weights from the keys of a single dict. A notable unsupported data type is the namedtuple. The reason is that it behaves like both an ordered datatype (tuple) and a mapping datatype (dict). So given a namedtuple of the form: namedtuple("example_tuple", ["y", "x"]) it is ambiguous whether to reverse the order of the elements when interpreting the value. Even worse is a tuple of the form: namedtuple("other_tuple", ["x", "y", "z"]) where it is unclear if the tuple was intended to be unpacked into x, y, and sample_weight or passed through as a single element to x. As a result the data processing code will simply raise a ValueError if it encounters a namedtuple. (Along with instructions to remedy the issue.)

    Returns
    A History object. Its History.history attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable).

    Raises
    RuntimeError If the model was never compiled.
    ValueError In case of mismatch between the provided input data and what the model expects.

    fit_generator

    View source

    Fits the model on data yielded batch-by-batch by a Python generator. (deprecated)

    DEPRECATED:

    Model.fit now supports generators, so there is no longer any need to use this endpoint.

    get_layer

    View source

    Retrieves a layer based on either its name (unique) or index.

    If name and index are both provided, index will take precedence. Indices are based on order of horizontal graph traversal (bottom-up).

    Arguments
    name String, name of layer.
    index Integer, index of layer.

    Returns
    A layer instance.

    Raises
    ValueError In case of invalid layer name or index.

    load_weights

    View source

    Loads all layer weights, either from a TensorFlow or an HDF5 weight file.

    If by_name is False weights are loaded based on the network's topology. This means the architecture should be the same as when the weights were saved. Note that layers that don't have weights are not taken into account in the topological ordering, so adding or removing layers is fine as long as they don't have weights.

    If by_name is True, weights are loaded into layers only if they share the same name. This is useful for fine-tuning or transfer-learning models where some of the layers have changed.

    Only topological loading (by_name=False) is supported when loading weights from the TensorFlow format. Note that topological loading differs slightly between TensorFlow and HDF5 formats for user-defined classes inheriting from tf.keras.Model: HDF5 loads based on a flattened list of weights, while the TensorFlow format loads based on the object-local names of attributes to which layers are assigned in the Model's constructor.

    Arguments
    filepath String, path to the weights file to load. For weight files in TensorFlow format, this is the file prefix (the same as was passed to save_weights).
    by_name Boolean, whether to load weights by name or by topological order. Only topological loading is supported for weight files in TensorFlow format.
    skip_mismatch Boolean, whether to skip loading of layers where there is a mismatch in the number of weights, or a mismatch in the shape of the weight (only valid when by_name=True).

    Returns
    When loading a weight file in TensorFlow format, returns the same status object as tf.train.Checkpoint.restore. When graph building, restore ops are run automatically as soon as the network is built (on first call for user-defined classes inheriting from Model, immediately if it is already built).

    When loading weights in HDF5 format, returns None.

    Raises
    ImportError If h5py is not available and the weight file is in HDF5 format.
    ValueError If skip_mismatch is set to True when by_name is False.

    make_predict_function

    View source

    Creates a function that executes one step of inference.

    This method can be overridden to support custom inference logic. This method is called by Model.predict and Model.predict_on_batch.

    Typically, this method directly controls tf.function and tf.distribute.Strategy settings, and delegates the actual evaluation logic to Model.predict_step.

    This function is cached the first time Model.predict or Model.predict_on_batch is called. The cache is cleared whenever Model.compile is called.

    Returns
    Function. The function created by this method should accept a tf.data.Iterator, and return the outputs of the Model.

    make_test_function

    View source

    Creates a function that executes one step of evaluation.

    This method can be overridden to support custom evaluation logic. This method is called by Model.evaluate and Model.test_on_batch.

    Typically, this method directly controls tf.function and tf.distribute.Strategy settings, and delegates the actual evaluation logic to Model.test_step.

    This function is cached the first time Model.evaluate or Model.test_on_batch is called. The cache is cleared whenever Model.compile is called.

    Returns
    Function. The function created by this method should accept a tf.data.Iterator, and return a dict containing values that will be passed to tf.keras.Callbacks.on_test_batch_end.

    make_train_function

    View source

    Creates a function that executes one step of training.

    This method can be overridden to support custom training logic. This method is called by Model.fit and Model.train_on_batch.

    Typically, this method directly controls tf.function and tf.distribute.Strategy settings, and delegates the actual training logic to Model.train_step.

    This function is cached the first time Model.fit or Model.train_on_batch is called. The cache is cleared whenever Model.compile is called.

    Returns
    Function. The function created by this method should accept a tf.data.Iterator, and return a dict containing values that will be passed to tf.keras.Callbacks.on_train_batch_end, such as {'loss': 0.2, 'accuracy': 0.7}.

    pop

    View source

    Removes the last layer in the model.

    Raises
    TypeError if there are no layers in the model.

    predict

    View source

    Generates output predictions for the input samples.

    Computation is done in batches. This method is designed for performance in large scale inputs. For small amount of inputs that fit in one batch, directly using __call__ is recommended for faster execution, e.g., model(x), or model(x, training=False) if you have layers such as tf.keras.layers.BatchNormalization that behaves differently during inference.

    Arguments
    x Input samples. It could be:

    • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
    • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
    • A tf.data dataset.
    • A generator or keras.utils.Sequence instance. A more detailed description of unpacking behavior for iterator types (Dataset, generator, Sequence) is given in the Unpacking behavior for iterator-like inputs section of Model.fit.
    batch_size Integer or None. Number of samples per batch. If unspecified, batch_size will default to 32. Do not specify the batch_size if your data is in the form of dataset, generators, or keras.utils.Sequence instances (since they generate batches).
    verbose Verbosity mode, 0 or 1.
    steps Total number of steps (batches of samples) before declaring the prediction round finished. Ignored with the default value of None. If x is a tf.data dataset and steps is None, predict will run until the input dataset is exhausted.
    callbacks List of keras.callbacks.Callback instances. List of callbacks to apply during prediction. See callbacks.
    max_queue_size Integer. Used for generator or keras.utils.Sequence input only. Maximum size for the generator queue. If unspecified, max_queue_size will default to 10.
    workers Integer. Used for generator or keras.utils.Sequence input only. Maximum number of processes to spin up when using process-based threading. If unspecified, workers will default to 1. If 0, will execute the generator on the main thread.
    use_multiprocessing Boolean. Used for generator or keras.utils.Sequence input only. If True, use process-based threading. If unspecified, use_multiprocessing will default to False. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes.

    See the discussion of Unpacking behavior for iterator-like inputs for Model.fit. Note that Model.predict uses the same interpretation rules as Model.fit and Model.evaluate, so inputs must be unambiguous for all three methods.

    Returns
    Numpy array(s) of predictions.

    Raises
    ValueError In case of mismatch between the provided input data and the model's expectations, or in case a stateful model receives a number of samples that is not a multiple of the batch size.

    predict_classes

    View source

    Generate class predictions for the input samples. (deprecated)

    The input samples are processed batch by batch.

    Arguments
    x input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs).
    batch_size integer.
    verbose verbosity mode, 0 or 1.

    Returns
    A numpy array of class predictions.

    predict_generator

    View source

    Generates predictions for the input samples from a data generator. (deprecated)

    DEPRECATED:

    Model.predict now supports generators, so there is no longer any need to use this endpoint.

    predict_on_batch

    View source

    Returns predictions for a single batch of samples.

    Arguments
    x Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).

    Returns
    Numpy array(s) of predictions.

    Raises
    ValueError In case of mismatch between given number of inputs and expectations of the model.

    predict_proba

    View source

    Generates class probability predictions for the input samples. (deprecated)

    The input samples are processed batch by batch.

    Arguments
    x input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs).
    batch_size integer.
    verbose verbosity mode, 0 or 1.

    Returns
    A Numpy array of probability predictions.

    predict_step

    View source

    The logic for one inference step.

    This method can be overridden to support custom inference logic. This method is called by Model.make_predict_function.

    This method should contain the mathemetical logic for one step of inference. This typically includes the forward pass.

    Configuration details for how this logic is run (e.g. tf.function and tf.distribute.Strategy settings), should be left to Model.make_predict_function, which can also be overridden.

    Arguments
    data A nested structure of Tensors.

    Returns
    The result of one inference step, typically the output of calling the Model on data.

    reset_metrics

    View source

    Resets the state of metrics.

    reset_states

    View source

    save

    View source

    Saves the model to Tensorflow SavedModel or a single HDF5 file.

    The savefile includes:

    • The model architecture, allowing to re-instantiate the model.
    • The model weights.
    • The state of the optimizer, allowing to resume training exactly where you left off.

    This allows you to save the entirety of the state of a model in a single file.

    Saved models can be reinstantiated via keras.models.load_model. The model returned by load_model is a compiled model ready to be used (unless the saved model was never compiled in the first place).

    Models built with the Sequential and Functional API can be saved to both the HDF5 and SavedModel formats. Subclassed models can only be saved with the SavedModel format.

    Note that the model weights may have different scoped names after being loaded. Scoped names include the model/layer names, such as "dense_1/kernel:0". It is recommended that you use the layer properties to access specific variables, e.g.model.get_layer("dense_1").kernel`.

    Arguments
    filepath String, path to SavedModel or H5 file to save the model.
    overwrite Whether to silently overwrite any existing file at the target location, or provide the user with a manual prompt.
    include_optimizer If True, save optimizer's state together.
    save_format Either 'tf' or 'h5', indicating whether to save the model to Tensorflow SavedModel or HDF5. Defaults to 'tf' in TF 2.X, and 'h5' in TF 1.X.
    signatures Signatures to save with the SavedModel. Applicable to the 'tf' format only. Please see the signatures argument in tf.saved_model.save for details.
    options Optional tf.saved_model.SaveOptions object that specifies options for saving to SavedModel.

    Example:

    from keras.models import load_model
    
    model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'
    del model  # deletes the existing model
    
    # returns a compiled model
    # identical to the previous one
    model = load_model('my_model.h5')
    

    save_weights

    View source

    Saves all layer weights.

    Either saves in HDF5 or in TensorFlow format based on the save_format argument.

    When saving in HDF5 format, the weight file has:

    • layer_names (attribute), a list of strings (ordered names of model layers).
    • For every layer, a group named layer.name
      • For every such layer group, a group attribute weight_names, a list of strings (ordered names of weights tensor of the layer).
      • For every weight in the layer, a dataset storing the weight value, named after the weight tensor.

    When saving in TensorFlow format, all objects referenced by the network are saved in the same format as tf.train.Checkpoint, including any Layer instances or Optimizer instances assigned to object attributes. For networks constructed from inputs and outputs using tf.keras.Model(inputs, outputs), Layer instances used by the network are tracked/saved automatically. For user-defined classes which inherit from tf.keras.Model, Layer instances must be assigned to object attributes, typically in the constructor. See the documentation of tf.train.Checkpoint and tf.keras.Model for details.

    While the formats are the same, do not mix save_weights and tf.train.Checkpoint. Checkpoints saved by Model.save_weights should be loaded using Model.load_weights. Checkpoints saved using tf.train.Checkpoint.save should be restored using the corresponding tf.train.Checkpoint.restore. Prefer tf.train.Checkpoint over save_weights for training checkpoints.

    The TensorFlow format matches objects and variables by starting at a root object, self for save_weights, and greedily matching attribute names. For Model.save this is the Model, and for Checkpoint.save this is the Checkpoint even if the Checkpoint has a model attached. This means saving a tf.keras.Model using save_weights and loading into a tf.train.Checkpoint with a Model attached (or vice versa) will not match the Model's variables. See the guide to training checkpoints for details on the TensorFlow format.

    Arguments
    filepath String, path to the file to save the weights to. When saving in TensorFlow format, this is the prefix used for checkpoint files (multiple files are generated). Note that the '.h5' suffix causes weights to be saved in HDF5 format.
    overwrite Whether to silently overwrite any existing file at the target location, or provide the user with a manual prompt.
    save_format Either 'tf' or 'h5'. A filepath ending in '.h5' or '.keras' will default to HDF5 if save_format is None. Otherwise None defaults to 'tf'.

    Raises
    ImportError If h5py is not available when attempting to save in HDF5 format.
    ValueError For invalid/unknown format arguments.

    summary

    View source

    Prints a string summary of the network.

    Arguments
    line_length Total length of printed lines (e.g. set this to adapt the display to different terminal window sizes).
    positions Relative or absolute positions of log elements in each line. If not provided, defaults to [.33, .55, .67, 1.].
    print_fn Print function to use. Defaults to print. It will be called on each line of the summary. You can set it to a custom function in order to capture the string summary.

    Raises
    ValueError if summary() is called before the model is built.

    test_on_batch

    View source

    Test the model on a single batch of samples.

    Arguments
    x Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).

    • A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
    y Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely).
    sample_weight Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile().
    reset_metrics If True, the metrics returned will be only for this batch. If False, the metrics will be statefully accumulated across batches.
    return_dict If True, loss and metric results are returned as a dict, with each key being the name of the metric. If False, they are returned as a list.

    Returns
    Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar outputs.

    Raises
    ValueError In case of invalid user-provided arguments.

    test_step

    View source

    The logic for one evaluation step.

    This method can be overridden to support custom evaluation logic. This method is called by Model.make_test_function.

    This function should contain the mathemetical logic for one step of evaluation. This typically includes the forward pass, loss calculation, and metrics updates.

    Configuration details for how this logic is run (e.g. tf.function and tf.distribute.Strategy settings), should be left to Model.make_test_function, which can also be overridden.

    Arguments
    data A nested structure of Tensors.

    Returns
    A dict containing values that will be passed to tf.keras.callbacks.CallbackList.on_train_batch_end. Typically, the values of the Model's metrics are returned.

    to_json

    View source

    Returns a JSON string containing the network configuration.

    To load a network from a JSON save file, use keras.models.model_from_json(json_string, custom_objects={}).

    Arguments
    **kwargs Additional keyword arguments to be passed to json.dumps().

    Returns
    A JSON string.

    to_yaml

    View source

    Returns a yaml string containing the network configuration.

    To load a network from a yaml save file, use keras.models.model_from_yaml(yaml_string, custom_objects={}).

    custom_objects should be a dictionary mapping the names of custom losses / layers / etc to the corresponding functions / classes.

    Arguments
    **kwargs Additional keyword arguments to be passed to yaml.dump().

    Returns
    A YAML string.

    Raises
    ImportError if yaml module is not found.

    train_on_batch

    View source

    Runs a single gradient update on a single batch of data.

    Arguments
    x Input data. It could be:

    • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
    • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
    • A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
    y Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely).
    sample_weight Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile().
    class_weight Optional dictionary mapping class indices (integers) to a weight (float) to apply to the model's loss for the samples from this class during training. This can be useful to tell the model to "pay more attention" to samples from an under-represented class.
    reset_metrics If True, the metrics returned will be only for this batch. If False, the metrics will be statefully accumulated across batches.
    return_dict If True, loss and metric results are returned as a dict, with each key being the name of the metric. If False, they are returned as a list.

    Returns
    Scalar training loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar outputs.

    Raises
    ValueError In case of invalid user-provided arguments.

    train_step

    View source

    The logic for one training step.

    This method can be overridden to support custom training logic. This method is called by Model.make_train_function.

    This method should contain the mathemetical logic for one step of training. This typically includes the forward pass, loss calculation, backpropagation, and metric updates.

    Configuration details for how this logic is run (e.g. tf.function and tf.distribute.Strategy settings), should be left to Model.make_train_function, which can also be overridden.

    Arguments
    data A nested structure of Tensors.

    Returns
    A dict containing values that will be passed to tf.keras.callbacks.CallbackList.on_train_batch_end. Typically, the values of the Model's metrics are returned. Example: {'loss': 0.2, 'accuracy': 0.7}.