TensorFlow 1 version | View source on GitHub |
Checks whether the current thread has eager execution enabled.
tf.executing_eagerly()
Eager execution is enabled by default and this API returns True
in most of cases. However, this API might return False
in the following use
cases.
- Executing inside
tf.function
, unless undertf.init_scope
ortf.config.experimental_run_functions_eagerly(True)
is previously called. - Executing inside a transformation function for
tf.dataset
. tf.compat.v1.disable_eager_execution()
is called.
General case:
print(tf.executing_eagerly())
True
Inside tf.function
:
@tf.function
def fn():
with tf.init_scope():
print(tf.executing_eagerly())
print(tf.executing_eagerly())
fn()
True
False
Inside tf.function
after
tf.config.experimental_run_functions_eagerly(True)
is called:
tf.config.experimental_run_functions_eagerly(True) @tf.function ... def fn(): ... with tf.init_scope(): ... print(tf.executing_eagerly()) ... print(tf.executing_eagerly()) fn() True True tf.config.experimental_run_functions_eagerly(False)
Inside a transformation function for tf.dataset
:
def data_fn(x):
print(tf.executing_eagerly())
return x
dataset = tf.data.Dataset.range(100)
dataset = dataset.map(data_fn)
False
Returns | |
---|---|
True if the current thread has eager execution enabled.
|