tf.compat.v1.keras.initializers.TruncatedNormal

View source on GitHub

Initializer that generates a truncated normal distribution.

Inherits From: truncated_normal_initializer

These values are similar to values from a random_normal_initializer except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters.

mean a python scalar or a scalar tensor. Mean of the random values to generate. Defaults to 0.
stddev a python scalar or a scalar tensor. Standard deviation of the random values to generate. Defaults to 0.05.
seed A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior.
dtype The data type. Only floating point types are supported.

A TruncatedNormal instance.

Methods

from_config

View source

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

Args
config A Python dictionary. It will typically be the output of get_config.

Returns
An Initializer instance.

get_config

View source

Returns the configuration of the initializer as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. If not provided use the initializer dtype.
partition_info Optional information about the possible partitioning of a tensor.