flujo tensor:: operaciones:: Cuantizar y decuantificar V2:: atributos

#include <array_ops.h>

Configuradores de atributos opcionales para QuantizeAndDequantizeV2 .

Resumen

Atributos públicos

axis_ = -1
int64
narrow_range_ = false
bool
num_bits_ = 8
int64
range_given_ = false
bool
round_mode_ = "HALF_TO_EVEN"
StringPiece
signed_input_ = true
bool

Funciones públicas

Axis (int64 x)
TF_MUST_USE_RESULT Attrs
Si se especifica, este eje se trata como un eje de canal o segmento, y se utiliza un rango de cuantificación separado para cada canal o segmento a lo largo de este eje.
NarrowRange (bool x)
TF_MUST_USE_RESULT Attrs
Si es Verdadero, entonces el valor absoluto del valor mínimo cuantificado es el mismo que el valor máximo cuantificado, en lugar de 1 mayor.
NumBits (int64 x)
TF_MUST_USE_RESULT Attrs
El ancho de bits de la cuantificación.
RangeGiven (bool x)
TF_MUST_USE_RESULT Attrs
Si el rango se proporciona o debe determinarse a partir del tensor input .
RoundMode (StringPiece x)
TF_MUST_USE_RESULT Attrs
El atributo 'round_mode' controla qué algoritmo de desempate de redondeo se utiliza al redondear valores flotantes a sus equivalentes cuantificados.
SignedInput (bool x)
TF_MUST_USE_RESULT Attrs
Si la cuantificación tiene o no signo.

Atributos públicos

eje_

int64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::axis_ = -1

rango_estrecho_

bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::narrow_range_ = false

núm_bits_

int64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::num_bits_ = 8

rango_dado_

bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::range_given_ = false

modo_redondo_

StringPiece tensorflow::ops::QuantizeAndDequantizeV2::Attrs::round_mode_ = "HALF_TO_EVEN"

entrada_firmada_

bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::signed_input_ = true

Funciones públicas

Eje

TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::Axis(
  int64 x
)

Si se especifica, este eje se trata como un eje de canal o segmento, y se utiliza un rango de cuantificación separado para cada canal o segmento a lo largo de este eje.

El valor predeterminado es -1

Rango estrecho

TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NarrowRange(
  bool x
)

Si es Verdadero, entonces el valor absoluto del valor mínimo cuantificado es el mismo que el valor máximo cuantificado, en lugar de 1 mayor.

es decir, para una cuantificación de 8 bits, el valor mínimo es -127 en lugar de -128.

El valor predeterminado es falso

Números de bits

TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NumBits(
  int64 x
)

El ancho de bits de la cuantificación.

Por defecto es 8

Rango dado

TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RangeGiven(
  bool x
)

Si el rango se proporciona o debe determinarse a partir del tensor input .

El valor predeterminado es falso

Modo redondo

TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RoundMode(
  StringPiece x
)

El atributo 'round_mode' controla qué algoritmo de desempate de redondeo se utiliza al redondear valores flotantes a sus equivalentes cuantificados.

Actualmente se admiten los siguientes modos de redondeo:

  • HALF_TO_EVEN: este es el modo redondo predeterminado.
  • HALF_UP: redondeo hacia positivo. En este modo, 7,5 se redondea a 8 y -7,5 se redondea a -7.

El valor predeterminado es "HALF_TO_EVEN"

Entrada firmada

TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::SignedInput(
  bool x
)

Si la cuantificación tiene o no signo.

(En realidad, este parámetro debería haberse llamado signed_output )

El valor predeterminado es verdadero