tensorflow :: operaciones :: MatrixDiagV2
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
#include <array_ops.h>
Devuelve un tensor diagonal por lotes con valores diagonales por lotes dados.
Resumen
Devuelve un tensor con el contenido en diagonal
como k[0]
-ésimo a k[1]
-ésimo diagonales de una matriz, con todo lo demás relleno con padding
. num_rows
y num_cols
especifican la dimensión de la matriz más interna de la salida. Si no se especifican ambos, la operación asume que la matriz más interna es cuadrada e infiere su tamaño de k
y la dimensión más interna de la diagonal
. Si solo se especifica uno de ellos, la operación asume que el valor no especificado es el más pequeño posible según otros criterios.
Deje que la diagonal
tenga r
dimensiones [I, J, ..., L, M, N]
. El tensor de salida tiene rango r+1
con forma [I, J, ..., L, M, num_rows, num_cols]
cuando solo se da una diagonal ( k
es un entero o k[0] == k[1]
) . De lo contrario, tiene rango r
con forma [I, J, ..., L, num_rows, num_cols]
.
La segunda dimensión más interna de la diagonal
tiene un doble significado. Cuando k
es escalar o k[0] == k[1]
, M
es parte del tamaño del lote [I, J, ..., M] y el tensor de salida es:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
padding_value ; otherwise
De lo contrario, M
se trata como el número de diagonales de la matriz en el mismo lote ( M = k[1]-k[0]+1
), y el tensor de salida es:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
padding_value ; otherwise
d = n - m
, diag_index = k[1] - d
, e index_in_diag = n - max(d, 0)
.Por ejemplo:
# The main diagonal.
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
[5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]],
[[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]]]
# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]],
[[0, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)
[4, 5, 0]],
[[6, 7, 9],
[9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 0, 0], # Output shape: (2, 3, 3)
[4, 2, 0],
[0, 5, 3]],
[[6, 0, 0],
[9, 7, 0],
[0, 1, 9]]]
# Rectangular matrix.
diagonal = np.array([1, 2]) # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
==> [[0, 0, 0, 0], # Output shape: (3, 4)
[1, 0, 0, 0],
[0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding_value = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
==> [[9, 9], # Output shape: (3, 2)
[1, 9],
[9, 2]]
Argumentos:
- alcance: un objeto de alcance
- diagonal: Rango
r
, donder >= 1
- k: Desplazamiento (s) diagonal (s). El valor positivo significa superdiagonal, 0 se refiere a la diagonal principal y el valor negativo significa subdiagonales.
k
puede ser un solo entero (para una sola diagonal) o un par de números enteros que especifiquen los extremos bajo y alto de una banda de matriz.k[0]
no debe ser mayor quek[1]
. - num_rows: el número de filas de la matriz de salida. Si no se proporciona, el operador asume que la matriz de salida es una matriz cuadrada e infiere el tamaño de la matriz de k y la dimensión más interna de la
diagonal
. - num_cols: el número de columnas de la matriz de salida. Si no se proporciona, el operador asume que la matriz de salida es una matriz cuadrada e infiere el tamaño de la matriz de k y la dimensión más interna de la
diagonal
. - padding_value: el número con el que llenar el área fuera de la banda diagonal especificada. El valor predeterminado es 0.
Devoluciones:
-
Output
: Tiene rangor+1
cuandok
es un número entero ok[0] == k[1]
, rangor
caso contrario.
Constructores y Destructores | |
---|---|
MatrixDiagV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input diagonal, :: tensorflow::Input k, :: tensorflow::Input num_rows, :: tensorflow::Input num_cols, :: tensorflow::Input padding_value) |
Funciones publicas | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
Atributos públicos
operación
Operation operation
producción
::tensorflow::Output output
Funciones publicas
MatrixDiagV2
MatrixDiagV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input diagonal,
::tensorflow::Input k,
::tensorflow::Input num_rows,
::tensorflow::Input num_cols,
::tensorflow::Input padding_value
)
nodo
::tensorflow::Node * node() const
operador :: tensorflow :: Entrada
operator::tensorflow::Input() const
operador :: tensorflow :: Salida
operator::tensorflow::Output() const