Fake-quantize the 'inputs' tensor of type float via per-channel floats
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel(
inputs, min, max, num_bits=8, narrow_range=False, name=None
)
Fake-quantize the inputs
tensor of type float per-channel and one of the
shapes: [d]
, [b, d]
[b, h, w, d]
via per-channel floats min
and max
of shape [d]
to outputs
tensor of same shape as inputs
.
Attributes
[min; max]
define the clamping range for theinputs
data.inputs
values are quantized into the quantization range ([0; 2^num_bits - 1]
whennarrow_range
is false and[1; 2^num_bits - 1]
when it is true) and then de-quantized and output as floats in[min; max]
interval.num_bits
is the bitwidth of the quantization; between 2 and 16, inclusive.
Before quantization, min
and max
values are adjusted with the following
logic.
It is suggested to have min <= 0 <= max
. If 0
is not in the range of values,
the behavior can be unexpected:
- If
0 < min < max
:min_adj = 0
andmax_adj = max - min
. - If
min < max < 0
:min_adj = min - max
andmax_adj = 0
. - If
min <= 0 <= max
:scale = (max - min) / (2^num_bits - 1)
,min_adj = scale * round(min / scale)
andmax_adj = max + min_adj - min
.
This operation has a gradient and thus allows for training min
and max
values.
Returns | |
---|---|
A Tensor of type float32 .
|