View source on GitHub |
Enable visualizations for TensorBoard.
Inherits From: Callback
tf.keras.callbacks.TensorBoard(
log_dir='logs',
histogram_freq=0,
write_graph=True,
write_images=False,
write_steps_per_second=False,
update_freq='epoch',
profile_batch=0,
embeddings_freq=0,
embeddings_metadata=None,
**kwargs
)
TensorBoard is a visualization tool provided with TensorFlow.
This callback logs events for TensorBoard, including:
- Metrics summary plots
- Training graph visualization
- Weight histograms
- Sampled profiling
When used in Model.evaluate
or regular validation
(on_test_end),
in addition to epoch summaries, there will be a summary that records
evaluation metrics vs Model.optimizer.iterations
written. The metric names
will be prepended with evaluation
, with Model.optimizer.iterations
being
the step in the visualized TensorBoard.
If you have installed TensorFlow with pip, you should be able to launch TensorBoard from the command line:
tensorboard --logdir=path_to_your_logs
You can find more information about TensorBoard here.
Args | |
---|---|
log_dir
|
the path of the directory where to save the log files to be parsed by TensorBoard. e.g. log_dir = os.path.join(working_dir, 'logs') This directory should not be reused by any other callbacks. |
histogram_freq
|
frequency (in epochs) at which to compute weight histograms for the layers of the model. If set to 0, histograms won't be computed. Validation data (or split) must be specified for histogram visualizations. |
write_graph
|
whether to visualize the graph in TensorBoard. The log file can become quite large when write_graph is set to True. |
write_images
|
whether to write model weights to visualize as image in TensorBoard. |
write_steps_per_second
|
whether to log the training steps per second into TensorBoard. This supports both epoch and batch frequency logging. |
update_freq
|
'batch' or 'epoch' or integer. When using 'epoch' ,
writes the losses and metrics to TensorBoard after every epoch.
If using an integer, let's say 1000 , all metrics and losses
(including custom ones added by Model.compile ) will be logged to
TensorBoard every 1000 batches. 'batch' is a synonym for 1 ,
meaning that they will be written every batch.
Note however that writing too frequently to TensorBoard can slow down
your training, especially when used with tf.distribute.Strategy as
it will incur additional synchronization overhead.
Use with ParameterServerStrategy is not supported.
Batch-level summary writing is also available via train_step
override. Please see
TensorBoard Scalars tutorial # noqa: E501
for more details.
|
profile_batch
|
Profile the batch(es) to sample compute characteristics. profile_batch must be a non-negative integer or a tuple of integers. A pair of positive integers signify a range of batches to profile. By default, profiling is disabled. |
embeddings_freq
|
frequency (in epochs) at which embedding layers will be visualized. If set to 0, embeddings won't be visualized. |
embeddings_metadata
|
Dictionary which maps embedding layer names to the filename of a file in which to save metadata for the embedding layer. In case the same metadata file is to be used for all embedding layers, a single filename can be passed. |
Examples:
Basic usage:
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs")
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
# Then run the tensorboard command to view the visualizations.
Custom batch-level summaries in a subclassed Model:
class MyModel(tf.keras.Model):
def build(self, _):
self.dense = tf.keras.layers.Dense(10)
def call(self, x):
outputs = self.dense(x)
tf.summary.histogram('outputs', outputs)
return outputs
model = MyModel()
model.compile('sgd', 'mse')
# Make sure to set `update_freq=N` to log a batch-level summary every N
# batches. In addition to any `tf.summary` contained in `Model.call`,
# metrics added in `Model.compile` will be logged every N batches.
tb_callback = tf.keras.callbacks.TensorBoard('./logs', update_freq=1)
model.fit(x_train, y_train, callbacks=[tb_callback])
Custom batch-level summaries in a Functional API Model:
def my_summary(x):
tf.summary.histogram('x', x)
return x
inputs = tf.keras.Input(10)
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Lambda(my_summary)(x)
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', 'mse')
# Make sure to set `update_freq=N` to log a batch-level summary every N
# batches. In addition to any `tf.summary` contained in `Model.call`,
# metrics added in `Model.compile` will be logged every N batches.
tb_callback = tf.keras.callbacks.TensorBoard('./logs', update_freq=1)
model.fit(x_train, y_train, callbacks=[tb_callback])
Profiling:
# Profile a single batch, e.g. the 5th batch.
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir='./logs', profile_batch=5)
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
# Profile a range of batches, e.g. from 10 to 20.
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir='./logs', profile_batch=(10,20))
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
Methods
set_model
set_model(
model
)
Sets Keras model and writes graph if specified.
set_params
set_params(
params
)