Initializer that generates a truncated normal distribution.
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.compat.v1.truncated_normal_initializer(
mean=0.0,
stddev=1.0,
seed=None,
dtype=tf.dtypes.float32
)
Migrate to TF2
Although it is a legacy compat.v1
API, this symbol is compatible with eager
execution and tf.function
.
To switch to TF2, switch to using either
tf.initializers.truncated_normal
or tf.keras.initializers.TruncatedNormal
(neither from compat.v1
) and
pass the dtype when calling the initializer. Keep in mind that
the default stddev and the behavior of fixed seeds have changed.
Structural Mapping to TF2
Before:
initializer = tf.compat.v1.truncated_normal_initializer(
mean=mean,
stddev=stddev,
seed=seed,
dtype=dtype)
weight_one = tf.Variable(initializer(shape_one))
weight_two = tf.Variable(initializer(shape_two))
After:
initializer = tf.initializers.truncated_normal(
mean=mean,
seed=seed,
stddev=stddev)
weight_one = tf.Variable(initializer(shape_one, dtype=dtype))
weight_two = tf.Variable(initializer(shape_two, dtype=dtype))
How to Map Arguments
TF1 Arg Name | TF2 Arg Name | Note |
---|---|---|
mean |
mean |
No change to defaults |
stddev |
stddev |
Default changes from 1.0 to 0.05 |
seed |
seed |
|
dtype
|
dtype
|
The TF2 native api only takes it
as a __call__ arg, not a constructor arg. |
partition_info |
- | (__call__ arg in TF1) Not supported |
Description
These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.
Args | |
---|---|
mean
|
a python scalar or a scalar tensor. Mean of the random values to generate. |
stddev
|
a python scalar or a scalar tensor. Standard deviation of the random values to generate. |
seed
|
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
|
dtype
|
Default data type, used if no dtype argument is provided when
calling the initializer. Only floating point types are supported.
|
Methods
from_config
@classmethod
from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args | |
---|---|
config
|
A Python dictionary. It will typically be the output of
get_config .
|
Returns | |
---|---|
An Initializer instance. |
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns | |
---|---|
A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape
|
Shape of the tensor. |
dtype
|
Optional dtype of the tensor. If not provided use the initializer dtype. |
partition_info
|
Optional information about the possible partitioning of a tensor. |