Apply a sparse update to a tensor taking the element-wise maximum.
tf.tensor_scatter_nd_max(
tensor: _atypes.TensorFuzzingAnnotation[TV_TensorScatterMax_T],
indices: _atypes.TensorFuzzingAnnotation[TV_TensorScatterMax_Tindices],
updates: _atypes.TensorFuzzingAnnotation[TV_TensorScatterMax_T],
name=None
) -> _atypes.TensorFuzzingAnnotation[TV_TensorScatterMax_T]
Returns a new tensor copied from tensor
whose values are element-wise maximum between
tensor and updates according to the indices.
tensor = [0, 0, 0, 0, 0, 0, 0, 0]
indices = [[1], [4], [5]]
updates = [1, -1, 1]
tf.tensor_scatter_nd_max(tensor, indices, updates).numpy()
array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int32)
Refer to tf.tensor_scatter_nd_update
for more details.
Returns | |
---|---|
A Tensor . Has the same type as tensor .
|