tf.keras.optimizers.legacy.Adam

Optimizer that implements the Adam algorithm.

Inherits From: Optimizer

Adam optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments.

According to Kingma et al., 2014, the method is "computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters".

learning_rate A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use, The learning rate. Defaults to 0.001.
beta_1 A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to 0.9.
beta_2 A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use, The exponential decay rate for the 2nd moment estimates. Defaults to 0.999.
epsilon A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to 1e-7.
amsgrad Boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". Defaults to False.
name Optional name for the operations created when applying gradients. Defaults to "Adam".
**kwargs keyword arguments. Allowed arguments are clipvalue, clipnorm, global_clipnorm. If clipvalue (float) is set, the gradient of each weight is clipped to be no higher than this value. If clipnorm (float) is set, the gradient of each weight is individually clipped so that its norm is no higher than this value. If global_clipnorm (float) is set the gradient of all weights is clipped so that their global norm is no higher than this value.

Usage:

opt = tf.keras.optimizers.legacy.Adam(learning_rate=0.1)
var1 = tf.Variable(10.0)
loss = lambda: (var1 ** 2)/2.0       # d(loss)/d(var1) == var1
step_count = opt.minimize(loss, [var1]).numpy()
# The first step is `-learning_rate*sign(grad)`
var1.numpy()
9.9

Notes:

The default value of 1e-7 for epsilon might not be a good default in general. For example, when training an Inception network on ImageNet a current good choice is 1.0 or 0.1. Note that since Adam uses the formulation just before Section 2.1 of the Kingma and Ba paper rather than the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon hat" in the paper.

The sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of tf.gather or an embedding lookup in the forward pass) does apply momentum to variable slices even if they were not used in the forward pass (meaning they have a gradient equal to zero). Momentum decay (beta1) is also applied to the entire momentum accumulator. This means that the sparse behavior is equivalent to the dense behavior (in contrast to some momentum implementations which ignore momentum unless a variable slice was actually used).

ValueError in case of any invalid argument.

clipnorm float or None. If set, clips gradients to a maximum norm.
clipvalue float or None. If set, clips gradients to a maximum value.
global_clipnorm float or None.

If set, clips gradients to a maximum norm.

Check tf.clip_by_global_norm for more details.

iterations Variable. The number of training steps this Optimizer has run.
weights Returns variables of this Optimizer based on the order created.

Methods

add_slot

View source

Add a new slot variable for var.

A slot variable is an additional variable associated with var to train. It is allocated and managed by optimizers, e.g. Adam.

Args
var a Variable object.
slot_name name of the slot variable.
initializer initializer of the slot variable
shape (Optional) shape of the slot variable. If not set, it will default to the shape of var.

Returns
A slot variable.

add_weight

View source

apply_gradients

View source

Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that applies gradients.

The method sums gradients from all replicas in the presence of tf.distribute.Strategy by default. You can aggregate gradients yourself by passing experimental_aggregate_gradients=False.

Example:

grads = tape.gradient(loss, vars)
grads = tf.distribute.get_replica_context().all_reduce('sum', grads)
# Processing aggregated gradients.
optimizer.apply_gradients(zip(grads, vars),
    experimental_aggregate_gradients=False)

Args
grads_and_vars List of (gradient, variable) pairs.
name Optional name for the returned operation. When None, uses the name passed to the Optimizer constructor. Defaults to None.
experimental_aggregate_gradients Whether to sum gradients from different replicas in the presence of tf.distribute.Strategy. If False, it's user responsibility to aggregate the gradients. Default to True.

Returns
An Operation that applies the specified gradients. The iterations will be automatically increased by 1.

Raises
TypeError If grads_and_vars is malformed.
ValueError If none of the variables have gradients.
RuntimeError If called in a cross-replica context.

from_config

View source

Creates an optimizer from its config.

This method is the reverse of get_config, capable of instantiating the same optimizer from the config dictionary.

Args
config A Python dictionary, typically the output of get_config.
custom_objects A Python dictionary mapping names to additional Python objects used to create this optimizer, such as a function used for a hyperparameter.

Returns
An optimizer instance.

get_config

View source

Returns the config of the optimizer.

An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.

Returns
Python dictionary.

get_gradients

View source

Returns gradients of loss with respect to params.

Should be used only in legacy v1 graph mode.

Args
loss Loss tensor.
params List of variables.

Returns
List of gradient tensors.

Raises
ValueError In case any gradient cannot be computed (e.g. if gradient function not implemented).

get_slot

View source

get_slot_names

View source

A list of names for this optimizer's slots.

get_updates

View source

get_weights

View source

Returns the current weights of the optimizer.

The weights of an optimizer are its state (ie, variables). This function returns the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they were created. The returned list can in turn be used to load state into similarly parameterized optimizers.

For example, the RMSprop optimizer for this simple model returns a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:

opt = tf.keras.optimizers.legacy.RMSprop()
m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
m.compile(opt, loss='mse')
data = np.arange(100).reshape(5, 20)
labels = np.zeros(5)
results = m.fit(data, labels)  # Training.
len(opt.get_weights())
3

Returns
Weights values as a list of numpy arrays.

minimize

View source

Minimize loss by updating var_list.

This method simply computes gradient using tf.GradientTape and calls apply_gradients(). If you want to process the gradient before applying then call tf.GradientTape and apply_gradients() explicitly instead of using this function.

Args
loss Tensor or callable. If a callable, loss should take no arguments and return the value to minimize. If a Tensor, the tape argument must be passed.
var_list list or tuple of Variable objects to update to minimize loss, or a callable returning the list or tuple of Variable objects. Use callable when the variable list would otherwise be incomplete before minimize since the variables are created at the first time loss is called.
grad_loss (Optional). A Tensor holding the gradient computed for loss.
name (Optional) str. Name for the returned operation.
tape (Optional) tf.GradientTape. If loss is provided as a Tensor, the tape that computed the loss must be provided.

Returns
An Operation that updates the variables in var_list. The iterations will be automatically increased by 1.

Raises
ValueError If some of the variables are not Variable objects.

set_weights

View source

Set the weights of the optimizer.

The weights of an optimizer are its state (ie, variables). This function takes the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they are created. The passed values are used to set the new state of the optimizer.

For example, the RMSprop optimizer for this simple model takes a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:

opt = tf.keras.optimizers.legacy.RMSprop()
m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
m.compile(opt, loss='mse')
data = np.arange(100).reshape(5, 20)
labels = np.zeros(5)
results = m.fit(data, labels)  # Training.
new_weights = [np.array(10), np.ones([20, 10]), np.zeros([10])]
opt.set_weights(new_weights)
opt.iterations
<tf.Variable &#x27;RMSprop/iter:0' shape=() dtype=int64, numpy=10>

Args
weights weight values as a list of numpy arrays.

variables

View source

Returns variables of this Optimizer based on the order created.