tf.keras.layers.SeparableConv2D

Depthwise separable 2D convolution.

Inherits From: Layer, Module

Separable convolutions consist of first performing a depthwise spatial convolution (which acts on each input channel separately) followed by a pointwise convolution which mixes the resulting output channels. The depth_multiplier argument controls how many output channels are generated per input channel in the depthwise step.

Intuitively, separable convolutions can be understood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version of an Inception block.

filters Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).
kernel_size An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Current implementation only supports equal length strides in the row and column dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). When unspecified, uses image_data_format value found in your Keras config file at ~/.keras/keras.json (if exists) else 'channels_last'. Defaults to 'channels_last'.
dilation_rate An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution.
depth_multiplier The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to filters_in * depth_multiplier.
activation Activation function to use. If you don't specify anything, no activation is applied (see keras.activations).
use_bias Boolean, whether the layer uses a bias vector.
depthwise_initializer An initializer for the depthwise convolution kernel (see keras.initializers). If None, then the default initializer ('glorot_uniform') will be used.
pointwise_initializer An initializer for the pointwise convolution kernel (see keras.initializers). If None, then the default initializer ('glorot_uniform') will be used.
bias_initializer An initializer for the bias vector. If None, the default initializer ('zeros') will be used (see keras.initializers).
depthwise_regularizer Regularizer function applied to the depthwise kernel matrix (see keras.regularizers).
pointwise_regularizer Regularizer function applied to the pointwise kernel matrix (see keras.regularizers).
bias_regularizer Regularizer function applied to the bias vector (see keras.regularizers).
activity_regularizer Regularizer function applied to the output of the layer (its "activation") (see keras.regularizers).
depthwise_constraint Constraint function applied to the depthwise kernel matrix (see keras.constraints).
pointwise_constraint Constraint function applied to the pointwise kernel matrix (see keras.constraints).
bias_constraint Constraint function applied to the bias vector (see keras.constraints).

4D tensor with shape: (batch_size, channels, rows, cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, rows, cols, channels) if data_format='channels_last'.

4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'. rows and cols values might have changed due to padding.

A tensor of rank 4 representing activation(separableconv2d(inputs, kernel) + bias).

ValueError if padding is "causal".

Methods

convolution_op

View source