View source on GitHub |
Applies the rectified linear unit activation function.
tf.keras.activations.relu(
x, alpha=0.0, max_value=None, threshold=0.0
)
With default values, this returns the standard ReLU activation:
max(x, 0)
, the element-wise maximum of 0 and the input tensor.
Modifying default parameters allows you to use non-zero thresholds, change the max value of the activation, and to use a non-zero multiple of the input for values below the threshold.
Example:
foo = tf.constant([-10, -5, 0.0, 5, 10], dtype = tf.float32)
tf.keras.activations.relu(foo).numpy()
array([ 0., 0., 0., 5., 10.], dtype=float32)
tf.keras.activations.relu(foo, alpha=0.5).numpy()
array([-5. , -2.5, 0. , 5. , 10. ], dtype=float32)
tf.keras.activations.relu(foo, max_value=5.).numpy()
array([0., 0., 0., 5., 5.], dtype=float32)
tf.keras.activations.relu(foo, threshold=5.).numpy()
array([-0., -0., 0., 0., 10.], dtype=float32)
Returns | |
---|---|
A Tensor representing the input tensor, transformed by the relu
activation function. Tensor will be of the same shape and dtype of
input x .
|