Hard sigmoid activation function.
tf.keras.activations.hard_sigmoid(
x
)
A faster approximation of the sigmoid activation.
Piecewise linear approximation of the sigmoid function.
Ref: 'https://en.wikipedia.org/wiki/Hard_sigmoid'
Example:
a = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype = tf.float32)
b = tf.keras.activations.hard_sigmoid(a)
b.numpy()
array([0. , 0.3, 0.5, 0.7, 1. ], dtype=float32)
Returns |
The hard sigmoid activation, defined as:
if x < -2.5: return 0
if x > 2.5: return 1
if -2.5 <= x <= 2.5: return 0.2 * x + 0.5
|