View source on GitHub |
Converts the given value
to a Tensor
.
tf.convert_to_tensor(
value, dtype=None, dtype_hint=None, name=None
) -> tf.Tensor
This function converts Python objects of various types to Tensor
objects. It accepts Tensor
objects, numpy arrays, Python lists,
and Python scalars.
For example:
import numpy as np
def my_func(arg):
arg = tf.convert_to_tensor(arg, dtype=tf.float32)
return arg
# The following calls are equivalent.
value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
print(value_1)
tf.Tensor(
[[1. 2.]
[3. 4.]], shape=(2, 2), dtype=float32)
value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
print(value_2)
tf.Tensor(
[[1. 2.]
[3. 4.]], shape=(2, 2), dtype=float32)
value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))
print(value_3)
tf.Tensor(
[[1. 2.]
[3. 4.]], shape=(2, 2), dtype=float32)
This function can be useful when composing a new operation in Python
(such as my_func
in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor
objects.
Returns | |
---|---|
A Tensor based on value .
|