Returns a given flattened sequence packed into a given structure.
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.nest.pack_sequence_as(
structure, flat_sequence, expand_composites=False
)
Refer to tf.nest for the definition of a structure.
If structure
is an atom, flat_sequence
must be a single-item list;
in this case the return value is flat_sequence[0]
.
If structure
is or contains a dict instance, the keys will be sorted to
pack the flat sequence in deterministic order. This is true also for
OrderedDict
instances: their sequence order is ignored, the sorting order of
keys is used instead. The same convention is followed in flatten
.
This correctly repacks dicts and OrderedDict
s after they have been
flattened, and also allows flattening an OrderedDict
and then repacking it
back using a corresponding plain dict, or vice-versa.
Dictionaries with non-sortable keys cannot be flattened.
Examples:
Python dict:
structure = { "key3": "", "key1": "", "key2": "" }
flat_sequence = ["value1", "value2", "value3"]
tf.nest.pack_sequence_as(structure, flat_sequence)
{'key3': 'value3', 'key1': 'value1', 'key2': 'value2'}
For a nested python tuple:
structure = (('a','b'), ('c','d','e'), 'f')
flat_sequence = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
tf.nest.pack_sequence_as(structure, flat_sequence)
((1.0, 2.0), (3.0, 4.0, 5.0), 6.0)
For a nested dictionary of dictionaries:
structure = { "key3": {"c": ('alpha', 'beta'), "a": ('gamma')},
"key1": {"e": "val1", "d": "val2"} }
flat_sequence = ['val2', 'val1', 3.0, 1.0, 2.0]
tf.nest.pack_sequence_as(structure, flat_sequence)
{'key3': {'c': (1.0, 2.0), 'a': 3.0}, 'key1': {'e': 'val1', 'd': 'val2'} }
Numpy array (considered a scalar):
structure = ['a']
flat_sequence = [np.array([[1, 2], [3, 4]])]
tf.nest.pack_sequence_as(structure, flat_sequence)
[array([[1, 2],
[3, 4]])]
tf.Tensor (considered a scalar):
structure = ['a']
flat_sequence = [tf.constant([[1., 2., 3.], [4., 5., 6.]])]
tf.nest.pack_sequence_as(structure, flat_sequence)
[<tf.Tensor: shape=(2, 3), dtype=float32,
numpy= array([[1., 2., 3.], [4., 5., 6.]], dtype=float32)>]
tf.RaggedTensor
: This is a composite tensor thats representation consists of a flattened list of 'values' and a list of 'row_splits' which indicate how to chop up the flattened list into different rows. For more details ontf.RaggedTensor
, please visit https://www.tensorflow.org/api_docs/python/tf/RaggedTensor.
With expand_composites=False
, we treat RaggedTensor as a scalar.
structure = { "foo": tf.ragged.constant([[1, 2], [3]]),
"bar": tf.constant([[5]]) }
flat_sequence = [ "one", "two" ]
tf.nest.pack_sequence_as(structure, flat_sequence,
expand_composites=False)
{'foo': 'two', 'bar': 'one'}
With expand_composites=True
, we expect that the flattened input contains
the tensors making up the ragged tensor i.e. the values and row_splits
tensors.
structure = { "foo": tf.ragged.constant([[1., 2.], [3.]]),
"bar": tf.constant([[5.]]) }
tensors = tf.nest.flatten(structure, expand_composites=True)
print(tensors)
[<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[5.]],
dtype=float32)>,
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([1., 2., 3.],
dtype=float32)>,
<tf.Tensor: shape=(3,), dtype=int64, numpy=array([0, 2, 3])>]
verified_tensors = [tf.debugging.check_numerics(t, 'invalid tensor: ')
if t.dtype==tf.float32 else t
for t in tensors]
tf.nest.pack_sequence_as(structure, verified_tensors,
expand_composites=True)
{'foo': <tf.RaggedTensor [[1.0, 2.0], [3.0]]>,
'bar': <tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[5.]],
dtype=float32)>}
Args | |
---|---|
structure
|
Nested structure, whose structure is given by nested lists, tuples, and dicts. Note: numpy arrays and strings are considered scalars. |
flat_sequence
|
flat sequence to pack. |
expand_composites
|
If true, then composite tensors such as
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
component tensors.
|