tensorflow:: ops:: ApplyGradientDescent
#include <training_ops.h>
Update '*var' by subtracting 'alpha' * 'delta' from it.
Summary
Args:
- scope: A Scope object
- var: Should be from a Variable().
- alpha: Scaling factor. Must be a scalar.
- delta: The change.
Optional attributes (see Attrs
):
- use_locking: If
True
, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
Output
: Same as "var".
Constructors and Destructors |
|
---|---|
ApplyGradientDescent(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta)
|
|
ApplyGradientDescent(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta, const ApplyGradientDescent::Attrs & attrs)
|
Public attributes |
|
---|---|
operation
|
|
out
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public static functions |
|
---|---|
UseLocking(bool x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for ApplyGradientDescent. |
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
ApplyGradientDescent
ApplyGradientDescent( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta )
ApplyGradientDescent
ApplyGradientDescent( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta, const ApplyGradientDescent::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
UseLocking
Attrs UseLocking( bool x )