Adagrad Dual Averaging algorithm for sparse linear models.
Inherits From: Optimizer
tf.compat.v1.train.AdagradDAOptimizer(
learning_rate,
global_step,
initial_gradient_squared_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
use_locking=False,
name='AdagradDA'
)
This optimizer takes care of regularization of unseen features in a mini batch by updating them when they are seen with a closed form update rule that is equivalent to having updated them on every mini-batch.
AdagradDA is typically used when there is a need for large sparsity in the trained model. This optimizer only guarantees sparsity for linear models. Be careful when using AdagradDA for deep networks as it will require careful initialization of the gradient accumulators for it to train.
References | |
---|---|
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization :Duchi et al., 2011 (pdf) |
Methods
apply_gradients
apply_gradients(
grads_and_vars, global_step=None, name=None
)
Apply gradients to variables.
This is the second part of minimize()
. It returns an Operation
that
applies gradients.
@compatibility(TF2)
How to Map Arguments
TF1 Arg Name | TF2 Arg Name | Note |
---|---|---|
grads_and_vars |
grads_and_vars |
- |
global_step |
Not supported. | Use optimizer.iterations |
name |
name. |
- |
Args | |
---|---|
grads_and_vars
|
List of (gradient, variable) pairs as returned by
compute_gradients() .
|
global_step
|
Optional Variable to increment by one after the
variables have been updated.
|
name
|
Optional name for the returned operation. Default to the
name passed to the Optimizer constructor.
|
Returns | |
---|---|
An Operation that applies the specified gradients. If global_step
was not None, that operation also increments global_step .
|
Raises | |
---|---|
TypeError
|
If grads_and_vars is malformed.
|
ValueError
|
If none of the variables have gradients. |
RuntimeError
|
If you should use _distributed_apply() instead.
|
compute_gradients
compute_gradients(
loss,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
grad_loss=None
)
Compute gradients of loss
for the variables in var_list
.
Migrate to TF2
tf.keras.optimizers.Optimizer
in TF2 does not provide a
compute_gradients
method, and you should use a tf.GradientTape
to
obtain the gradients:
@tf.function
def train step(inputs):
batch_data, labels = inputs
with tf.GradientTape() as tape:
predictions = model(batch_data, training=True)
loss = tf.keras.losses.CategoricalCrossentropy(
reduction=tf.keras.losses.Reduction.NONE)(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
Args:
loss: A Tensor containing the value to minimize or a callable taking
no arguments which returns the value to minimize. When eager execution
is enabled it must be a callable.
var_list: Optional list or tuple of tf.Variable
to update to minimize
loss
. Defaults to the list of variables collected in the graph
under the key GraphKeys.TRAINABLE_VARIABLES
.
gate_gradients: How to gate the computation of gradients. Can be
GATE_NONE
, GATE_OP
, or GATE_GRAPH
.
aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod
.
colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.
grad_loss: Optional. A Tensor
holding the gradient computed for loss
.
Returns:
A list of (gradient, variable) pairs. Variable is always present, but
gradient can be None
.
Raises:
TypeError: If var_list
contains anything else than Variable
objects.
ValueError: If some arguments are invalid.
RuntimeError: If called with eager execution enabled and loss
is
not callable.
@compatibility(eager)
When eager execution is enabled, gate_gradients
, aggregation_method
,
and colocate_gradients_with_ops
are ignored.
Description
This is the first part of minimize()
. It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable". Note that "gradient" can be a Tensor
, an
IndexedSlices
, or None
if there is no gradient for the
given variable.
get_name
get_name()
get_slot
get_slot(
var, name
)
Return a slot named name
created for var
by the Optimizer.
Some Optimizer
subclasses use additional variables. For example
Momentum
and Adagrad
use variables to accumulate updates. This method
gives access to these Variable
objects if for some reason you need them.
Use get_slot_names()
to get the list of slot names created by the
Optimizer
.
Args | |
---|---|
var
|
A variable passed to minimize() or apply_gradients() .
|
name
|
A string. |
Returns | |
---|---|
The Variable for the slot if it was created, None otherwise.
|
get_slot_names
get_slot_names()
Return a list of the names of slots created by the Optimizer
.
See get_slot()
.
Returns | |
---|---|
A list of strings. |
minimize
minimize(
loss,
global_step=None,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None
)
Add operations to minimize loss
by updating var_list
.
This method simply combines calls compute_gradients()
and
apply_gradients()
. If you want to process the gradient before applying
them call compute_gradients()
and apply_gradients()
explicitly instead
of using this function.
Args | |
---|---|
loss
|
A Tensor containing the value to minimize.
|
global_step
|
Optional Variable to increment by one after the
variables have been updated.
|
var_list
|
Optional list or tuple of Variable objects to update to
minimize loss . Defaults to the list of variables collected in
the graph under the key GraphKeys.TRAINABLE_VARIABLES .
|
gate_gradients
|
How to gate the computation of gradients. Can be
GATE_NONE , GATE_OP , or GATE_GRAPH .
|
aggregation_method
|
Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod .
|
colocate_gradients_with_ops
|
If True, try colocating gradients with the corresponding op. |
name
|
Optional name for the returned operation. |
grad_loss
|
Optional. A Tensor holding the gradient computed for loss .
|
Returns | |
---|---|
An Operation that updates the variables in var_list . If global_step
was not None , that operation also increments global_step .
|
Raises | |
---|---|
ValueError
|
If some of the variables are not Variable objects.
|
eager compatibility
When eager execution is enabled, loss
should be a Python function that
takes no arguments and computes the value to be minimized. Minimization (and
gradient computation) is done with respect to the elements of var_list
if
not None, else with respect to any trainable variables created during the
execution of the loss
function. gate_gradients
, aggregation_method
,
colocate_gradients_with_ops
and grad_loss
are ignored when eager
execution is enabled.
variables
variables()
A list of variables which encode the current state of Optimizer
.
Includes slot variables and additional global variables created by the optimizer in the current default graph.
Returns | |
---|---|
A list of variables. |