View source on GitHub |
Base class for weight constraints.
A Constraint
instance works like a stateless function.
Users who subclass this
class should override the __call__
method, which takes a single
weight parameter and return a projected version of that parameter
(e.g. normalized or clipped). Constraints can be used with various Keras
layers via the kernel_constraint
or bias_constraint
arguments.
Here's a simple example of a non-negative weight constraint:
class NonNegative(tf.keras.constraints.Constraint):
def __call__(self, w):
return w * tf.cast(tf.math.greater_equal(w, 0.), w.dtype)
weight = tf.constant((-1.0, 1.0))
NonNegative()(weight)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([0., 1.],
dtype=float32)>
tf.keras.layers.Dense(4, kernel_constraint=NonNegative())
Methods
get_config
get_config()
Returns a Python dict of the object config.
A constraint config is a Python dictionary (JSON-serializable) that can be used to reinstantiate the same object.
Returns | |
---|---|
Python dict containing the configuration of the constraint object. |
__call__
__call__(
w
)
Applies the constraint to the input weight variable.
By default, the inputs weight variable is not modified. Users should override this method to implement their own projection function.
Args | |
---|---|
w
|
Input weight variable. |
Returns | |
---|---|
Projected variable (by default, returns unmodified inputs). |