View source on GitHub |
Gather slices from params
into a Tensor with shape specified by indices
.
tf.gather_nd(
params, indices, batch_dims=0, name=None
)
indices
is a Tensor
of indices into params
. The index vectors are
arranged along the last axis of indices
.
This is similar to tf.gather
, in which indices
defines slices into the
first dimension of params
. In tf.gather_nd
, indices
defines slices into the
first N
dimensions of params
, where N = indices.shape[-1]
.
Gathering scalars
In the simplest case the vectors in indices
index the full rank of params
:
tf.gather_nd(
indices=[[0, 0],
[1, 1]],
params = [['a', 'b'],
['c', 'd']]).numpy()
array([b'a', b'd'], dtype=object)
In this case the result has 1-axis fewer than indices
, and each index vector
is replaced by the scalar indexed from params
.
In this case the shape relationship is:
index_depth = indices.shape[-1]
assert index_depth == params.shape.rank
result_shape = indices.shape[:-1]
If indices
has a rank of K
, it is helpful to think indices
as a
(K-1)-dimensional tensor of indices into params
.
Gathering slices
If the index vectors do not index the full rank of params
then each location
in the result contains a slice of params. This example collects rows from a
matrix:
tf.gather_nd(
indices = [[1],
[0]],
params = [['a', 'b', 'c'],
['d', 'e', 'f']]).numpy()
array([[b'd', b'e', b'f'],
[b'a', b'b', b'c']], dtype=object)
Here indices
contains [2]
index vectors, each with a length of 1
.
The index vectors each refer to rows of the params
matrix. Each
row has a shape of [3]
so the output shape is [2, 3]
.
In this case, the relationship between the shapes is:
index_depth = indices.shape[-1]
outer_shape = indices.shape[:-1]
assert index_depth <= params.shape.rank
inner_shape = params.shape[index_depth:]
output_shape = outer_shape + inner_shape
It is helpful to think of the results in this case as tensors-of-tensors.
The shape of the outer tensor is set by the leading dimensions of indices
.
While the shape of the inner tensors is the shape of a single slice.
Batches
Additionally both params
and indices
can have M
leading batch
dimensions that exactly match. In this case batch_dims
must be set to M
.
For example, to collect one row from each of a batch of matrices you could set the leading elements of the index vectors to be their location in the batch:
tf.gather_nd(
indices = [[0, 1],
[1, 0],
[2, 4],
[3, 2],
[4, 1]],
params=tf.zeros([5, 7, 3])).shape.as_list()
[5, 3]
The batch_dims
argument lets you omit those leading location dimensions
from the index:
tf.gather_nd(
batch_dims=1,
indices = [[1],
[0],
[4],
[2],
[1]],
params=tf.zeros([5, 7, 3])).shape.as_list()
[5, 3]
This is equivalent to caling a separate gather_nd
for each location in the
batch dimensions.
params=tf.zeros([5, 7, 3])
indices=tf.zeros([5, 1])
batch_dims = 1
index_depth = indices.shape[-1]
batch_shape = indices.shape[:batch_dims]
assert params.shape[:batch_dims] == batch_shape
outer_shape = indices.shape[batch_dims:-1]
assert index_depth <= params.shape.rank
inner_shape = params.shape[batch_dims + index_depth:]
output_shape = batch_shape + outer_shape + inner_shape
output_shape.as_list()
[5, 3]
More examples
Indexing into a 3-tensor:
tf.gather_nd(
indices = [[1]],
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
array([[[b'a1', b'b1'],
[b'c1', b'd1']]], dtype=object)
tf.gather_nd(
indices = [[0, 1], [1, 0]],
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
array([[b'c0', b'd0'],
[b'a1', b'b1']], dtype=object)
tf.gather_nd(
indices = [[0, 0, 1], [1, 0, 1]],
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
array([b'b0', b'b1'], dtype=object)
The examples below are for the case when only indices have leading extra dimensions. If both 'params' and 'indices' have leading batch dimensions, use the 'batch_dims' parameter to run gather_nd in batch mode.
Batched indexing into a matrix:
tf.gather_nd(
indices = [[[0, 0]], [[0, 1]]],
params = [['a', 'b'], ['c', 'd']]).numpy()
array([[b'a'],
[b'b']], dtype=object)
Batched slice indexing into a matrix:
tf.gather_nd(
indices = [[[1]], [[0]]],
params = [['a', 'b'], ['c', 'd']]).numpy()
array([[[b'c', b'd']],
[[b'a', b'b']]], dtype=object)
Batched indexing into a 3-tensor:
tf.gather_nd(
indices = [[[1]], [[0]]],
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
array([[[[b'a1', b'b1'],
[b'c1', b'd1']]],
[[[b'a0', b'b0'],
[b'c0', b'd0']]]], dtype=object)
tf.gather_nd(
indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]],
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
array([[[b'c0', b'd0'],
[b'a1', b'b1']],
[[b'a0', b'b0'],
[b'c1', b'd1']]], dtype=object)
tf.gather_nd(
indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]],
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
array([[b'b0', b'b1'],
[b'd0', b'c1']], dtype=object)
Examples with batched 'params' and 'indices':
tf.gather_nd(
batch_dims = 1,
indices = [[1],
[0]],
params = [[['a0', 'b0'],
['c0', 'd0']],
[['a1', 'b1'],
['c1', 'd1']]]).numpy()
array([[b'c0', b'd0'],
[b'a1', b'b1']], dtype=object)
tf.gather_nd(
batch_dims = 1,
indices = [[[1]], [[0]]],
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
array([[[b'c0', b'd0']],
[[b'a1', b'b1']]], dtype=object)
tf.gather_nd(
batch_dims = 1,
indices = [[[1, 0]], [[0, 1]]],
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
array([[b'c0'],
[b'b1']], dtype=object)
See also tf.gather
.
Returns | |
---|---|
A Tensor . Has the same type as params .
|