tf.train.CheckpointManager

TensorFlow 1 version View source on GitHub

Deletes old checkpoints.

Example usage:

import tensorflow as tf
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
manager = tf.contrib.checkpoint.CheckpointManager(
    checkpoint, directory="/tmp/model", max_to_keep=5)
status = checkpoint.restore(manager.latest_checkpoint)
while True:
  # train
  manager.save()

CheckpointManager preserves its own state across instantiations (see the __init__ documentation for details). Only one should be active in a particular directory at a time.

checkpoint The tf.train.Checkpoint instance to save and manage checkpoints for.
directory The path to a directory in which to write checkpoints. A special file named "checkpoint" is also written to this directory (in a human-readable text format) which contains the state of the CheckpointManager.
max_to_keep An integer, the number of checkpoints to keep. Unless preserved by keep_checkpoint_every_n_hours, checkpoints will be deleted from the active set, oldest first, until only max_to_keep checkpoints remain. If None, no checkpoints are deleted and everything stays in the active set. Note that max_to_keep=None will keep all checkpoint paths in memory and in the checkpoint state protocol buffer on disk.
keep_checkpoint_every_n_hours Upon removal from the active set, a checkpoint will be preserved if it has been at least keep_checkpoint_every_n_hours since the last preserved checkpoint. The default setting of None does not preserve any checkpoints in this way.
checkpoint_name Custom name for the checkpoint file.

ValueError If max_to_keep is not a positive integer.

checkpoints A list of managed checkpoints.

Note that checkpoints saved due to keep_checkpoint_every_n_hours will not show up in this list (to avoid ever-growing filename lists).

latest_checkpoint The prefix of the most recent checkpoint in directory.

Equivalent to tf.train.latest_checkpoint(directory) where directory is the constructor argument to CheckpointManager.

Suitable for passing to tf.train.Checkpoint.restore to resume training.

Methods

save

View source

Creates a new checkpoint and manages it.

Args
checkpoint_number An optional integer, or an integer-dtype Variable or Tensor, used to number the checkpoint. If None (default), checkpoints are numbered using checkpoint.save_counter. Even if checkpoint_number is provided, save_counter is still incremented. A user-provided checkpoint_number is not incremented even if it is a Variable.

Returns
The path to the new checkpoint. It is also recorded in the checkpoints and latest_checkpoint properties.