Adds sparse updates
to an existing tensor according to indices
.
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.compat.v1.tensor_scatter_add
, tf.compat.v1.tensor_scatter_nd_add
tf.tensor_scatter_nd_add(
tensor, indices, updates, name=None
)
This operation creates a new tensor by adding sparse updates
to the passed
in tensor
.
This operation is very similar to tf.scatter_nd_add
, except that the updates
are added onto an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.
indices
is an integer tensor containing indices into a new tensor of shape
shape
. The last dimension of indices
can be at most the rank of shape
:
indices.shape[-1] <= shape.rank
The last dimension of indices
corresponds to indices into elements
(if indices.shape[-1] = shape.rank
) or slices
(if indices.shape[-1] < shape.rank
) along dimension indices.shape[-1]
of
shape
. updates
is a tensor with shape
indices.shape[:-1] + shape[indices.shape[-1]:]
The simplest form of tensor_scatter_add is to add individual elements to a tensor by index. For example, say we want to add 4 elements in a rank-1 tensor with 8 elements.
In Python, this scatter add operation would look like this:
indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
tensor = tf.ones([8], dtype=tf.int32)
updated = tf.tensor_scatter_add(tensor, indices, updates)
with tf.Session() as sess:
print(sess.run(scatter))
The resulting tensor would look like this:
[1, 12, 1, 11, 10, 1, 1, 13]
We can also, insert entire slices of a higher rank tensor all at once. For example, if we wanted to insert two slices in the first dimension of a rank-3 tensor with two matrices of new values.
In Python, this scatter add operation would look like this:
indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]],
[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]]])
tensor = tf.ones([4, 4, 4])
updated = tf.tensor_scatter_add(tensor, indices, updates)
with tf.Session() as sess:
print(sess.run(scatter))
The resulting tensor would look like this:
[[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]
Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, the index is ignored.
Args | |
---|---|
tensor
|
A Tensor . Tensor to copy/update.
|
indices
|
A Tensor . Must be one of the following types: int32 , int64 .
Index tensor.
|
updates
|
A Tensor . Must have the same type as tensor .
Updates to scatter into output.
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as tensor .
|