TensorFlow 1 version | View source on GitHub |
Perturb a LinearOperator
with a rank K
update.
Inherits From: LinearOperator
tf.linalg.LinearOperatorLowRankUpdate(
base_operator, u, diag_update=None, v=None, is_diag_update_positive=None,
is_non_singular=None, is_self_adjoint=None, is_positive_definite=None,
is_square=None, name='LinearOperatorLowRankUpdate'
)
This operator acts like a [batch] matrix A
with shape
[B1,...,Bb, M, N]
for some b >= 0
. The first b
indices index a
batch member. For every batch index (i1,...,ib)
, A[i1,...,ib, : :]
is
an M x N
matrix.
LinearOperatorLowRankUpdate
represents A = L + U D V^H
, where
L, is a LinearOperator representing [batch] M x N matrices
U, is a [batch] M x K matrix. Typically K << M.
D, is a [batch] K x K matrix.
V, is a [batch] N x K matrix. Typically K << N.
V^H is the Hermitian transpose (adjoint) of V.
If M = N
, determinants and solves are done using the matrix determinant
lemma and Woodbury identities, and thus require L and D to be non-singular.
Solves and determinants will be attempted unless the "is_non_singular" property of L and D is False.
In the event that L and D are positive-definite, and U = V, solves and determinants can be done using a Cholesky factorization.
# Create a 3 x 3 diagonal linear operator.
diag_operator = LinearOperatorDiag(
diag_update=[1., 2., 3.], is_non_singular=True, is_self_adjoint=True,
is_positive_definite=True)
# Perturb with a rank 2 perturbation
operator = LinearOperatorLowRankUpdate(
operator=diag_operator,
u=[[1., 2.], [-1., 3.], [0., 0.]],
diag_update=[11., 12.],
v=[[1., 2.], [-1., 3.], [10., 10.]])
operator.shape
==> [3, 3]
operator.log_abs_determinant()
==> scalar Tensor
x = ... Shape [3, 4] Tensor
operator.matmul(x)
==> Shape [3, 4] Tensor
Shape compatibility
This operator acts on [batch] matrix with compatible shape.
x
is a batch matrix with compatible shape for matmul
and solve
if
operator.shape = [B1,...,Bb] + [M, N], with b >= 0
x.shape = [B1,...,Bb] + [N, R], with R >= 0.
Performance
Suppose operator
is a LinearOperatorLowRankUpdate
of shape [M, N]
,
made from a rank K
update of base_operator
which performs .matmul(x)
on
x
having x.shape = [N, R]
with O(L_matmul*N*R)
complexity (and similarly
for solve
, determinant
. Then, if x.shape = [N, R]
,
operator.matmul(x)
isO(L_matmul*N*R + K*N*R)
and if M = N
,
operator.solve(x)
isO(L_matmul*N*R + N*K*R + K^2*R + K^3)
operator.determinant()
isO(L_determinant + L_solve*N*K + K^2*N + K^3)
If instead operator
and x
have shape [B1,...,Bb, M, N]
and
[B1,...,Bb, N, R]
, every operation increases in complexity by B1*...*Bb
.
Matrix property hints
This LinearOperator
is initialized with boolean flags of the form is_X
,
for X = non_singular
, self_adjoint
, positive_definite
,
diag_update_positive
and square
. These have the following meaning:
- If
is_X == True
, callers should expect the operator to have the propertyX
. This is a promise that should be fulfilled, but is not a runtime assert. For example, finite floating point precision may result in these promises being violated. - If
is_X == False
, callers should expect the operator to not haveX
. - If
is_X == None
(the default), callers should have no expectation either way.
Args | |
---|---|
base_operator
|
Shape [B1,...,Bb, M, N] .
|
u
|
Shape [B1,...,Bb, M, K] Tensor of same dtype as base_operator .
This is U above.
|
diag_update
|
Optional shape [B1,...,Bb, K] Tensor with same dtype
as base_operator . This is the diagonal of D above.
Defaults to D being the identity operator.
|
v
|
Optional Tensor of same dtype as u and shape [B1,...,Bb, N, K]
Defaults to v = u , in which case the perturbation is symmetric.
If M != N , then v must be set since the perturbation is not square.
|
is_diag_update_positive
|
Python bool .
If True , expect diag_update > 0 .
|
is_non_singular
|
Expect that this operator is non-singular.
Default is None , unless is_positive_definite is auto-set to be
True (see below).
|
is_self_adjoint
|
Expect that this operator is equal to its hermitian
transpose. Default is None , unless base_operator is self-adjoint
and v = None (meaning u=v ), in which case this defaults to True .
|
is_positive_definite
|
Expect that this operator is positive definite.
Default is None , unless base_operator is positive-definite
v = None (meaning u=v ), and is_diag_update_positive , in which case
this defaults to True .
Note that we say an operator is positive definite when the quadratic
form x^H A x has positive real part for all nonzero x .
|
is_square
|
Expect that this operator acts like square [batch] matrices. |
name
|
A name for this LinearOperator .
|
Raises | |
---|---|
ValueError
|
If is_X flags are set in an inconsistent way.
|
Attributes | |
---|---|
H
|
Returns the adjoint of the current LinearOperator .
Given |
base_operator
|
If this operator is A = L + U D V^H , this is the L .
|
batch_shape
|
TensorShape of batch dimensions of this LinearOperator .
If this operator acts like the batch matrix |
diag_operator
|
If this operator is A = L + U D V^H , this is D .
|
diag_update
|
If this operator is A = L + U D V^H , this is the diagonal of D .
|
domain_dimension
|
Dimension (in the sense of vector spaces) of the domain of this operator.
If this operator acts like the batch matrix |
dtype
|
The DType of Tensor s handled by this LinearOperator .
|
graph_parents
|
List of graph dependencies of this LinearOperator .
|
is_diag_update_positive
|
If this operator is A = L + U D V^H , this hints D > 0 elementwise.
|
is_non_singular
|
|
is_positive_definite
|
|
is_self_adjoint
|
|
is_square
|
Return True/False depending on if this operator is square.
|
range_dimension
|
Dimension (in the sense of vector spaces) of the range of this operator.
If this operator acts like the batch matrix |
shape
|
TensorShape of this LinearOperator .
If this operator acts like the batch matrix |
tensor_rank
|
Rank (in the sense of tensors) of matrix corresponding to this operator.
If this operator acts like the batch matrix |
u
|
If this operator is A = L + U D V^H , this is the U .
|
v
|
If this operator is A = L + U D V^H , this is the V .
|
Methods
add_to_tensor
add_to_tensor(
x, name='add_to_tensor'
)
Add matrix represented by this operator to x
. Equivalent to A + x
.
Args | |
---|---|
x
|
Tensor with same dtype and shape broadcastable to self.shape .
|
name
|
A name to give this Op .
|
Returns | |
---|---|
A Tensor with broadcast shape and same dtype as self .
|
adjoint
adjoint(
name='adjoint'
)
Returns the adjoint of the current LinearOperator
.
Given A
representing this LinearOperator
, return A*
.
Note that calling self.adjoint()
and self.H
are equivalent.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
LinearOperator which represents the adjoint of this LinearOperator .
|
assert_non_singular
assert_non_singular(
name='assert_non_singular'
)
Returns an Op
that asserts this operator is non singular.
This operator is considered non-singular if
ConditionNumber < max{100, range_dimension, domain_dimension} * eps,
eps := np.finfo(self.dtype.as_numpy_dtype).eps
Args | |
---|---|
name
|
A string name to prepend to created ops. |
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if
the operator is singular.
|
assert_positive_definite
assert_positive_definite(
name='assert_positive_definite'
)
Returns an Op
that asserts this operator is positive definite.
Here, positive definite means that the quadratic form x^H A x
has positive
real part for all nonzero x
. Note that we do not require the operator to
be self-adjoint to be positive definite.
Args | |
---|---|
name
|
A name to give this Op .
|
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if
the operator is not positive definite.
|
assert_self_adjoint
assert_self_adjoint(
name='assert_self_adjoint'
)
Returns an Op
that asserts this operator is self-adjoint.
Here we check that this operator is exactly equal to its hermitian transpose.
Args | |
---|---|
name
|
A string name to prepend to created ops. |
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if
the operator is not self-adjoint.
|
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of batch dimensions of this operator, determined at runtime.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns a Tensor
holding
[B1,...,Bb]
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor
|
cholesky
cholesky(
name='cholesky'
)
Returns a Cholesky factor as a LinearOperator
.
Given A
representing this LinearOperator
, if A
is positive definite
self-adjoint, return L
, where A = L L^T
, i.e. the cholesky
decomposition.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
LinearOperator which represents the lower triangular matrix
in the Cholesky decomposition.
|
Raises | |
---|---|
ValueError
|
When the LinearOperator is not hinted to be positive
definite and self adjoint.
|
determinant
determinant(
name='det'
)
Determinant for every batch member.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
Tensor with shape self.batch_shape and same dtype as self .
|
Raises | |
---|---|
NotImplementedError
|
If self.is_square is False .
|
diag_part
diag_part(
name='diag_part'
)
Efficiently get the [batch] diagonal part of this operator.
If this operator has shape [B1,...,Bb, M, N]
, this returns a
Tensor
diagonal
, of shape [B1,...,Bb, min(M, N)]
, where
diagonal[b1,...,bb, i] = self.to_dense()[b1,...,bb, i, i]
.
my_operator = LinearOperatorDiag([1., 2.])
# Efficiently get the diagonal
my_operator.diag_part()
==> [1., 2.]
# Equivalent, but inefficient method
tf.linalg.diag_part(my_operator.to_dense())
==> [1., 2.]
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
diag_part
|
A Tensor of same dtype as self.
|
domain_dimension_tensor
domain_dimension_tensor(
name='domain_dimension_tensor'
)
Dimension (in the sense of vector spaces) of the domain of this operator.
Determined at runtime.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns N
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor
|
inverse
inverse(
name='inverse'
)
Returns the Inverse of this LinearOperator
.
Given A
representing this LinearOperator
, return a LinearOperator
representing A^-1
.
Args | |
---|---|
name
|
A name scope to use for ops added by this method. |
Returns | |
---|---|
LinearOperator representing inverse of this matrix.
|
Raises | |
---|---|
ValueError
|
When the LinearOperator is not hinted to be non_singular .
|
log_abs_determinant
log_abs_determinant(
name='log_abs_det'
)
Log absolute value of determinant for every batch member.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
Tensor with shape self.batch_shape and same dtype as self .
|
Raises | |
---|---|
NotImplementedError
|
If self.is_square is False .
|
matmul
matmul(
x, adjoint=False, adjoint_arg=False, name='matmul'
)
Transform [batch] matrix x
with left multiplication: x --> Ax
.
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
X = ... # shape [..., N, R], batch matrix, R > 0.
Y = operator.matmul(X)
Y.shape
==> [..., M, R]
Y[..., :, r] = sum_j A[..., :, j] X[j, r]
Args | |
---|---|
x
|
LinearOperator or Tensor with compatible shape and same dtype as
self . See class docstring for definition of compatibility.
|
adjoint
|
Python bool . If True , left multiply by the adjoint: A^H x .
|
adjoint_arg
|
Python bool . If True , compute A x^H where x^H is
the hermitian transpose (transposition and complex conjugation).
|
name
|
A name for this Op .
|
Returns | |
---|---|
A LinearOperator or Tensor with shape [..., M, R] and same dtype
as self .
|
matvec
matvec(
x, adjoint=False, name='matvec'
)
Transform [batch] vector x
with left multiplication: x --> Ax
.
# Make an operator acting like batch matric A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
X = ... # shape [..., N], batch vector
Y = operator.matvec(X)
Y.shape
==> [..., M]
Y[..., :] = sum_j A[..., :, j] X[..., j]
Args | |
---|---|
x
|
Tensor with compatible shape and same dtype as self .
x is treated as a [batch] vector meaning for every set of leading
dimensions, the last dimension defines a vector.
See class docstring for definition of compatibility.
|
adjoint
|
Python bool . If True , left multiply by the adjoint: A^H x .
|
name
|
A name for this Op .
|
Returns | |
---|---|
A Tensor with shape [..., M] and same dtype as self .
|
range_dimension_tensor
range_dimension_tensor(
name='range_dimension_tensor'
)
Dimension (in the sense of vector spaces) of the range of this operator.
Determined at runtime.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns M
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor
|
shape_tensor
shape_tensor(
name='shape_tensor'
)
Shape of this LinearOperator
, determined at runtime.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns a Tensor
holding
[B1,...,Bb, M, N]
, equivalent to tf.shape(A)
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor
|
solve
solve(
rhs, adjoint=False, adjoint_arg=False, name='solve'
)
Solve (exact or approx) R
(batch) systems of equations: A X = rhs
.
The returned Tensor
will be close to an exact solution if A
is well
conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
# Solve R > 0 linear systems for every member of the batch.
RHS = ... # shape [..., M, R]
X = operator.solve(RHS)
# X[..., :, r] is the solution to the r'th linear system
# sum_j A[..., :, j] X[..., j, r] = RHS[..., :, r]
operator.matmul(X)
==> RHS
Args | |
---|---|
rhs
|
Tensor with same dtype as this operator and compatible shape.
rhs is treated like a [batch] matrix meaning for every set of leading
dimensions, the last two dimensions defines a matrix.
See class docstring for definition of compatibility.
|
adjoint
|
Python bool . If True , solve the system involving the adjoint
of this LinearOperator : A^H X = rhs .
|
adjoint_arg
|
Python bool . If True , solve A X = rhs^H where rhs^H
is the hermitian transpose (transposition and complex conjugation).
|
name
|
A name scope to use for ops added by this method. |
Returns | |
---|---|
Tensor with shape [...,N, R] and same dtype as rhs .
|
Raises | |
---|---|
NotImplementedError
|
If self.is_non_singular or is_square is False.
|
solvevec
solvevec(
rhs, adjoint=False, name='solve'
)
Solve single equation with best effort: A X = rhs
.
The returned Tensor
will be close to an exact solution if A
is well
conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
# Solve one linear system for every member of the batch.
RHS = ... # shape [..., M]
X = operator.solvevec(RHS)
# X is the solution to the linear system
# sum_j A[..., :, j] X[..., j] = RHS[..., :]
operator.matvec(X)
==> RHS
Args | |
---|---|
rhs
|
Tensor with same dtype as this operator.
rhs is treated like a [batch] vector meaning for every set of leading
dimensions, the last dimension defines a vector. See class docstring
for definition of compatibility regarding batch dimensions.
|
adjoint
|
Python bool . If True , solve the system involving the adjoint
of this LinearOperator : A^H X = rhs .
|
name
|
A name scope to use for ops added by this method. |
Returns | |
---|---|
Tensor with shape [...,N] and same dtype as rhs .
|
Raises | |
---|---|
NotImplementedError
|
If self.is_non_singular or is_square is False.
|
tensor_rank_tensor
tensor_rank_tensor(
name='tensor_rank_tensor'
)
Rank (in the sense of tensors) of matrix corresponding to this operator.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns b + 2
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor , determined at runtime.
|
to_dense
to_dense(
name='to_dense'
)
Return a dense (batch) matrix representing this operator.
trace
trace(
name='trace'
)
Trace of the linear operator, equal to sum of self.diag_part()
.
If the operator is square, this is also the sum of the eigenvalues.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
Shape [B1,...,Bb] Tensor of same dtype as self .
|