TensorFlow 1 version | View source on GitHub |
Loads a keras Model from a SavedModel created by export_saved_model()
. (deprecated)
tf.keras.experimental.load_from_saved_model(
saved_model_path, custom_objects=None
)
This function reinstantiates model state by:
1) loading model topology from json (this will eventually come from metagraph). 2) loading model weights from checkpoint.
Example:
import tensorflow as tf
# Create a tf.keras model.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1, input_shape=[10]))
model.summary()
# Save the tf.keras model in the SavedModel format.
path = '/tmp/simple_keras_model'
tf.keras.experimental.export_saved_model(model, path)
# Load the saved keras model back.
new_model = tf.keras.experimental.load_from_saved_model(path)
new_model.summary()
Args | |
---|---|
saved_model_path
|
a string specifying the path to an existing SavedModel. |
custom_objects
|
Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. |
Returns | |
---|---|
a keras.Model instance. |