TensorFlow 1 version | View source on GitHub |
Decorator to define a function with a custom gradient.
tf.custom_gradient(
f
)
This decorator allows fine grained control over the gradients of a sequence for operations. This may be useful for multiple reasons, including providing a more efficient or numerically stable gradient for a sequence of operations.
For example, consider the following function that commonly occurs in the computation of cross entropy and log likelihoods:
def log1pexp(x):
return tf.math.log(1 + tf.exp(x))
Due to numerical instability, the gradient this function evaluated at x=100 is NaN. For example:
x = tf.constant(100.)
y = log1pexp(x)
dy = tf.gradients(y, x) # Will be NaN when evaluated.
The gradient expression can be analytically simplified to provide numerical stability:
@tf.custom_gradient
def log1pexp(x):
e = tf.exp(x)
def grad(dy):
return dy * (1 - 1 / (1 + e))
return tf.math.log(1 + e), grad
With this definition, the gradient at x=100 will be correctly evaluated as 1.0.
See also tf.RegisterGradient
which registers a gradient function for a
primitive TensorFlow operation. tf.custom_gradient
on the other hand allows
for fine grained control over the gradient computation of a sequence of
operations.
Note that if the decorated function uses Variable
s, the enclosing variable
scope must be using ResourceVariable
s.
Args | |
---|---|
f
|
function f(*x) that returns a tuple (y, grad_fn) where:
If |
Returns | |
---|---|
A function h(x) which returns the same value as f(x)[0] and whose
gradient (as calculated by tf.gradients ) is determined by f(x)[1] .
|