تدفق التوتر:: العمليات:: TakeManySparseFromTensorsMap
#include <sparse_ops.h>
يحول التمثيل المتناثر إلى موتر كثيف.
ملخص
يبني مصفوفة dense
ذات شكل output_shape
من هذا القبيل
إذا كانت المؤشرات المتفرقة عددية
كثيفة [i] = (i == مؤشرات متفرقة؟ قيم متفرقة: القيمة الافتراضية)
إذا كانت الفهارس المتفرقة متجهة، فكل i
كثيفة [المؤشرات المتفرقة [i]] = القيم المتفرقة [i]
إذا كانت المؤشرات المتفرقة عبارة عن مصفوفة n بواسطة d، فكل i في [0، n)
كثيفة [المؤشرات المتفرقة [i] [0]، ...، المؤشرات المتفرقة [i] [d-1]] = القيم المتفرقة [i]
All other values in `dense` are set to `default_value`. If `sparse_values` is a scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not contain any repeats. If `validate_indices` is true, these properties are checked during execution.
Arguments: * scope: A Scope object * sparse_indices: 0-D, 1-D, or 2-D. `sparse_indices[i]` contains the complete index where `sparse_values[i]` will be placed. * output_shape: 1-D. Shape of the dense output tensor. * sparse_values: 1-D. Values corresponding to each row of `sparse_indices`, or a scalar value to be used for all sparse indices. * default_value: Scalar value to set for indices not specified in `sparse_indices`.
Optional attributes (see `Attrs`): * validate_indices: If true, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.
Returns: * `Output`: Dense output tensor of shape `output_shape`. */ class SparseToDense { public: /// Optional attribute setters for SparseToDense struct Attrs { /** If true, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.
Defaults to true */ TF_MUST_USE_RESULT Attrs ValidateIndices(bool x) { Attrs ret = *this; ret.validate_indices_ = x; return ret; }
bool validate_indices_ = true; }; SparseToDense(const tensorflow::Scope& scope, tensorflow::Input sparse_indices, tensorflow::Input output_shape, tensorflow::Input sparse_values, tensorflow::Input default_value); SparseToDense(const tensorflow::Scope& scope, tensorflow::Input sparse_indices, tensorflow::Input output_shape, tensorflow::Input sparse_values, tensorflow::Input default_value, const SparseToDense::Attrs& attrs); operator ::tensorflow::Output() const { return dense; } operator ::tensorflow::Input() const { return dense; } ::tensorflow::Node* node() const { return dense.node(); }
static Attrs ValidateIndices(bool x) { return Attrs().ValidateIndices(x); }
Operation operation; tensorflow::Output dense; };
/** Read `SparseTensors` from a `SparseTensorsMap` and concatenate them.
The input `sparse_handles` must be an `int64` matrix of shape `[N, 1]` where `N` is the minibatch size and the rows correspond to the output handles of `AddSparseToTensorsMap` or `AddManySparseToTensorsMap`. The ranks of the original `SparseTensor` objects that went into the given input ops must all match. When the final `SparseTensor` is created, it has rank one higher than the ranks of the incoming `SparseTensor` objects (they have been concatenated along a new row dimension on the left).
The output `SparseTensor` object's shape values for all dimensions but the first are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. Its first shape value is `N`, the minibatch size.
The input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run `SparseReorder` to restore index ordering.
For example, if the handles represent an input, which is a `[2, 3]` matrix representing two original `SparseTensor` objects:index = [ 0] [10] [20] values = [1, 2, 3] shape = [50]
andindex = [ 2] [10] values = [4, 5] shape = [30]
then the final `SparseTensor` will be:index = [0 0] [0 10] [0 20] [1 2] [1 10] values = [1, 2, 3, 4, 5] shape = [2 50] ```Arguments:
- scope: A Scope object
- sparse_handles: 1-D, The
N
serializedSparseTensor
objects. Shape:[N]
. - dtype: The
dtype
of theSparseTensor
objects stored in theSparseTensorsMap
.
Optional attributes (see Attrs
):
- container: The container name for the
SparseTensorsMap
read by this op. - shared_name: The shared name for the
SparseTensorsMap
read by this op. It should not be blank; rather theshared_name
or unique Operation name of the Op that created the originalSparseTensorsMap
should be used.
Returns:
Output
sparse_indices: 2-D. Theindices
of the minibatchSparseTensor
.Output
sparse_values: 1-D. Thevalues
of the minibatchSparseTensor
.Output
sparse_shape: 1-D. Theshape
of the minibatchSparseTensor
.
Constructors and Destructors |
|
---|---|
TakeManySparseFromTensorsMap(const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype)
|
|
TakeManySparseFromTensorsMap(const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype, const TakeManySparseFromTensorsMap::Attrs & attrs)
|
Public attributes |
|
---|---|
operation
|
|
sparse_indices
|
|
sparse_shape
|
|
sparse_values
|
Public static functions |
|
---|---|
Container(StringPiece x)
|
|
SharedName(StringPiece x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for TakeManySparseFromTensorsMap. |
Public attributes
operation
Operation operation
-sparse_indices
::tensorflow::Output sparse_indices
sparse_shape
::tensorflow::Output sparse_shape
-sparse_values
::tensorflow::Output sparse_values
الوظائف العامة
TakeManySparseFromTensorsMap
TakeManySparseFromTensorsMap( const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype )
TakeManySparseFromTensorsMap
TakeManySparseFromTensorsMap( const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype, const TakeManySparseFromTensorsMap::Attrs & attrs )
وظائف ثابتة العامة
حاوية
Attrs Container( StringPiece x )
الاسم المشترك
Attrs SharedName( StringPiece x )
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2024-11-21 (حسب التوقيت العالمي المتفَّق عليه)