fluxo tensor:: ops:: SparseApplyFtrlV2

#include <training_ops.h>

Atualize as entradas relevantes em '*var' de acordo com o esquema Ftrl-proximal.

Resumo

Isso é para linhas para as quais temos grad, atualizamos var, accum e linear da seguinte forma: grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad_with_shrinkage * grad_with_shrinkage linear += grad_with_shrinkage + (accum_new^(-lr_power) - accum^ (-lr_power)) / lr * var quadrático = 1,0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (sinal(linear) * l1 - linear) / quadrático if |linear| > l1 senão 0,0 acumular = acumular_novo

Argumentos:

  • escopo: um objeto Escopo
  • var: Deve ser de uma variável().
  • accum: Deve ser de uma variável().
  • linear: deve ser de uma variável().
  • graduação: O gradiente.
  • índices: Um vetor de índices na primeira dimensão de var e accum.
  • lr: Fator de escala. Deve ser um escalar.
  • l1: regularização L1. Deve ser um escalar.
  • l2: Regularização de contração L2. Deve ser um escalar.
  • lr_power: fator de escala. Deve ser um escalar.

Atributos opcionais (veja Attrs ):

  • use_locking: Se True , a atualização dos tensores var e accum será protegida por um bloqueio; caso contrário, o comportamento será indefinido, mas poderá apresentar menos contenção.

Retorna:

Construtores e Destruidores

SparseApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power)
SparseApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power, const SparseApplyFtrlV2::Attrs & attrs)

Atributos públicos

operation
out

Funções públicas

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Funções estáticas públicas

UseLocking (bool x)

Estruturas

tensorflow:: ops:: SparseApplyFtrlV2:: Attrs

Configuradores de atributos opcionais para SparseApplyFtrlV2 .

Atributos públicos

operação

Operation operation

fora

::tensorflow::Output out

Funções públicas

SparseApplyFtrlV2

 SparseApplyFtrlV2(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input l2_shrinkage,
  ::tensorflow::Input lr_power
)

SparseApplyFtrlV2

 SparseApplyFtrlV2(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input l2_shrinkage,
  ::tensorflow::Input lr_power,
  const SparseApplyFtrlV2::Attrs & attrs
)

::tensorflow::Node * node() const 

operador::tensorflow::Input

 operator::tensorflow::Input() const 

operador::tensorflow::Saída

 operator::tensorflow::Output() const 

Funções estáticas públicas

UseLocking

Attrs UseLocking(
  bool x
)