tensorflow:: אופס:: ApplyRMSProp

#include <training_ops.h>

עדכן את '*var' לפי אלגוריתם RMSProp.

תַקצִיר

שימו לב שביישום צפוף של אלגוריתם זה, ms ו-mom יתעדכנו גם אם ה-grad הוא אפס, אבל ביישום הדליל הזה, ms ו-mom לא יתעדכנו באיטרציות שבמהלכן הגראד הוא אפס.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 Delta = learning_rate * gradient / sqrt(mean_square + epsilon)

ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mom

טיעונים:

  • scope: אובייקט Scope
  • var: צריך להיות מ-Variable().
  • ms: צריך להיות מ-Variable().
  • mom: צריך להיות מ-Variable().
  • lr: גורם קנה מידה. חייב להיות סקלר.
  • rho: קצב דעיכה. חייב להיות סקלר.
  • אפסילון: מונח רכס. חייב להיות סקלר.
  • grad: השיפוע.

מאפיינים אופציונליים (ראה Attrs ):

  • use_locking: אם True , עדכון הטנזורים var, ms ו-mom מוגן על ידי מנעול; אחרת ההתנהגות אינה מוגדרת, אך עלולה להפגין פחות מחלוקת.

החזרות:

בנאים והורסים

ApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
ApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ApplyRMSProp::Attrs & attrs)

תכונות ציבוריות

operation
out

תפקידים ציבוריים

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

פונקציות סטטיות ציבוריות

UseLocking (bool x)

מבנים

tensorflow:: ops:: ApplyRMSProp:: Attrs

קובעי תכונות אופציונליים עבור ApplyRMSProp .

תכונות ציבוריות

מִבצָע

Operation operation

הַחוּצָה

::tensorflow::Output out

תפקידים ציבוריים

ApplyRMSProp

 ApplyRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad
)

ApplyRMSProp

 ApplyRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  const ApplyRMSProp::Attrs & attrs
)

צוֹמֶת

::tensorflow::Node * node() const 

מפעיל::tensorflow::קלט

 operator::tensorflow::Input() const 

אופרטור::tensorflow::פלט

 operator::tensorflow::Output() const 

פונקציות סטטיות ציבוריות

השתמש בנעילה

Attrs UseLocking(
  bool x
)
,

tensorflow:: אופס:: ApplyRMSProp

#include <training_ops.h>

עדכן את '*var' לפי אלגוריתם RMSProp.

תַקצִיר

שימו לב שביישום צפוף של אלגוריתם זה, ms ו-mom יתעדכנו גם אם ה-grad הוא אפס, אבל ביישום הדליל הזה, ms ו-mom לא יתעדכנו באיטרציות שבמהלכן הגראד הוא אפס.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 Delta = learning_rate * gradient / sqrt(mean_square + epsilon)

ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mom

טיעונים:

  • scope: אובייקט Scope
  • var: צריך להיות מ-Variable().
  • ms: צריך להיות מ-Variable().
  • mom: צריך להיות מ-Variable().
  • lr: גורם קנה מידה. חייב להיות סקלר.
  • rho: קצב דעיכה. חייב להיות סקלר.
  • אפסילון: מונח רכס. חייב להיות סקלר.
  • grad: השיפוע.

מאפיינים אופציונליים (ראה Attrs ):

  • use_locking: אם True , עדכון הטנזורים var, ms ו-mom מוגן על ידי מנעול; אחרת ההתנהגות אינה מוגדרת, אך עלולה להפגין פחות מחלוקת.

החזרות:

בנאים והורסים

ApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
ApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ApplyRMSProp::Attrs & attrs)

תכונות ציבוריות

operation
out

תפקידים ציבוריים

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

פונקציות סטטיות ציבוריות

UseLocking (bool x)

מבנים

tensorflow:: ops:: ApplyRMSProp:: Attrs

קובעי תכונות אופציונליים עבור ApplyRMSProp .

תכונות ציבוריות

מִבצָע

Operation operation

הַחוּצָה

::tensorflow::Output out

תפקידים ציבוריים

ApplyRMSProp

 ApplyRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad
)

ApplyRMSProp

 ApplyRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  const ApplyRMSProp::Attrs & attrs
)

צוֹמֶת

::tensorflow::Node * node() const 

מפעיל::tensorflow::קלט

 operator::tensorflow::Input() const 

אופרטור::tensorflow::פלט

 operator::tensorflow::Output() const 

פונקציות סטטיות ציבוריות

השתמש בנעילה

Attrs UseLocking(
  bool x
)