TPU version of tf.compat.v1.feature_column.embedding_column
.
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.tpu.experimental.embedding_column(
categorical_column, dimension, combiner='mean', initializer=None,
max_sequence_length=0, learning_rate_fn=None
)
Note that the interface for tf.tpu.experimental.embedding_column
is
different from that of tf.compat.v1.feature_column.embedding_column
: The
following arguments are NOT supported: ckpt_to_load_from
,
tensor_name_in_ckpt
, max_norm
and trainable
.
Use this function in place of tf.compat.v1.feature_column.embedding_column
when you want to use the TPU to accelerate your embedding lookups via TPU
embeddings.
column = tf.feature_column.categorical_column_with_identity(...)
tpu_column = tf.tpu.experimental.embedding_column(column, 10)
...
def model_fn(features):
dense_feature = tf.keras.layers.DenseFeature(tpu_column)
embedded_feature = dense_feature(features)
...
estimator = tf.estimator.tpu.TPUEstimator(
model_fn=model_fn,
...
embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
column=[tpu_column],
...))
Args | |
---|---|
categorical_column
|
A categorical column returned from
categorical_column_with_identity , weighted_categorical_column ,
categorical_column_with_vocabulary_file ,
categorical_column_with_vocabulary_list ,
sequence_categorical_column_with_identity ,
sequence_categorical_column_with_vocabulary_file ,
sequence_categorical_column_with_vocabulary_list
|
dimension
|
An integer specifying dimension of the embedding, must be > 0. |
combiner
|
A string specifying how to reduce if there are multiple entries
in a single row for a non-sequence column. For more information, see
tf.feature_column.embedding_column .
|
initializer
|
A variable initializer function to be used in embedding
variable initialization. If not specified, defaults to
tf.compat.v1.truncated_normal_initializer with mean 0.0 and
standard deviation 1/sqrt(dimension) .
|
max_sequence_length
|
An non-negative integer specifying the max sequence length. Any sequence shorter then this will be padded with 0 embeddings and any sequence longer will be truncated. This must be positive for sequence features and 0 for non-sequence features. |
learning_rate_fn
|
A function that takes global step and returns learning rate for the embedding table. |
Returns | |
---|---|
A _TPUEmbeddingColumnV2 .
|
Raises | |
---|---|
ValueError
|
if dimension not > 0.
|
ValueError
|
if initializer is specified but not callable.
|