Initializer that generates tensors with a uniform distribution.
Inherits From: Initializer
tf.random_uniform_initializer(
minval=0, maxval=None, seed=None, dtype=tf.dtypes.float32
)
Args |
minval
|
A python scalar or a scalar tensor. Lower bound of the range of
random values to generate.
|
maxval
|
A python scalar or a scalar tensor. Upper bound of the range of
random values to generate. Defaults to 1 for float types.
|
seed
|
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
|
dtype
|
Default data type, used if no dtype argument is provided when
calling the initializer.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary. It will typically be the output of
get_config .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor. If not provided use the initializer
dtype.
|
partition_info
|
Optional information about the possible partitioning of a
tensor.
|