Conceptually tracks indices of arguments of "OpHint functions".
tf.lite.OpHint.OpHintArgumentTracker(
function_name, unique_function_id, node_name_prefix, attr_name, level=1,
children_inputs_mappings=None
)
The inputs and arguments of these functions both use an instance
of the class so they can have independent numbering.
Args |
function_name
|
Name of the function that this tracks arguments for.
|
unique_function_id
|
UUID of function that this tracks arguments for.
|
node_name_prefix
|
How identities that are created are named.
|
attr_name
|
Name of attribute to use to store the index for this hint.
i.e. FUNCTION_INPUT_INDEX or FUNCTION_OUTPUT_INDEX
|
level
|
Hierarchical level of the Ophint node, a number.
|
children_inputs_mappings
|
Inputs/Outputs mapping for children hints.
|
Methods
add
View source
add(
arg, tag=None, name=None, aggregate=None, index_override=None
)
Return a wrapped tensor of an input tensor as an argument.
Args |
arg
|
A TensorFlow tensor that should be considered an argument.
|
tag
|
String tag to identify arguments that should be packed.
|
name
|
Name of argument. This is included in the Identity hint op names.
|
aggregate
|
Strategy to aggregate.
Acceptable values are OpHint.AGGREGATE_FIRST, OpHint.AGGREGATE_LAST,
and OpHint.AGGREGATE_STACK.
Note, aggregate is only valid if tag is specified.
|
index_override
|
Specify what input/output index should this be in the
final stub. i.e. add(arg0, index=1); add(arg1, index=0) will make the
final stub be as stub_func(inputs[arg1, arg0], outputs=[]) rather than
the default call order based ordering.
|
Returns |
A tensor representing the wrapped argument.
|
Raises |
ValueError
|
When indices are not consistent.
|