TensorFlow 2 version | View source on GitHub |
Computes the element-wise (weighted) mean of the given tensors.
Inherits From: Metric
tf.keras.metrics.MeanTensor(
name='mean_tensor', dtype=None
)
MeanTensor
returns a tensor with the same shape of the input tensors. The
mean value is updated by keeping local variables total
and count
. The
total
tracks the sum of the weighted values, and count
stores the sum of
the weighted counts.
Usage:
m = tf.keras.metrics.MeanTensor()
m.update_state([0, 1, 2, 3])
m.update_state([4, 5, 6, 7])
print('Result: ', m.result().numpy()) # Result: [2, 3, 4, 5]
m.update_state([12, 10, 8, 6], sample_weights= [0, 0.2, 0.5, 1])
print('Result: ', m.result().numpy()) # Result: [2, 3.636, 4.8, 5.333]
Args | |
---|---|
name
|
(Optional) string name of the metric instance. |
dtype
|
(Optional) data type of the metric result. |
Attributes | |
---|---|
count
|
|
total
|
Methods
reset_states
reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
values, sample_weight=None
)
Accumulates statistics for computing the element-wise mean.
Args | |
---|---|
values
|
Per-example value. |
sample_weight
|
Optional weighting of each example. Defaults to 1. |
Returns | |
---|---|
Update op. |