View source on GitHub |
Wrapper class for SDCA optimizer.
tf.contrib.linear_optimizer.SDCAOptimizer(
example_id_column, num_loss_partitions=1, num_table_shards=None,
symmetric_l1_regularization=0.0, symmetric_l2_regularization=1.0, adaptive=True,
partitioner=None
)
The wrapper is currently meant for use as an optimizer within a tf.learn Estimator.
Example usage:
real_feature_column = real_valued_column(...)
sparse_feature_column = sparse_column_with_hash_bucket(...)
sdca_optimizer = linear.SDCAOptimizer(example_id_column='example_id',
num_loss_partitions=1,
num_table_shards=1,
symmetric_l2_regularization=2.0)
classifier = tf.contrib.learn.LinearClassifier(
feature_columns=[real_feature_column, sparse_feature_column],
weight_column_name=...,
optimizer=sdca_optimizer)
classifier.fit(input_fn_train, steps=50)
classifier.evaluate(input_fn=input_fn_eval)
Here the expectation is that the input_fn_*
functions passed to train and
evaluate return a pair (dict, label_tensor) where dict has example_id_column
as key
whose value is a Tensor
of shape [batch_size] and dtype string.
num_loss_partitions defines the number of partitions of the global loss
function and should be set to (#concurrent train ops/per worker)
x (#workers)
.
Convergence of (global) loss is guaranteed if num_loss_partitions
is larger
or equal to the above product. Larger values for num_loss_partitions
lead to
slower convergence. The recommended value for num_loss_partitions
in
tf.learn
(where currently there is one process per worker) is the number
of workers running the train steps. It defaults to 1 (single machine).
num_table_shards
defines the number of shards for the internal state
table, typically set to match the number of parameter servers for large
data sets. You can also specify a partitioner
object to partition the primal
weights during training (div
partitioning strategy will be used).
Attributes | |
---|---|
adaptive
|
|
example_id_column
|
|
num_loss_partitions
|
|
num_table_shards
|
|
partitioner
|
|
symmetric_l1_regularization
|
|
symmetric_l2_regularization
|
Methods
get_name
get_name()
get_train_step
get_train_step(
columns_to_variables, weight_column_name, loss_type, features, targets,
global_step
)
Returns the training operation of an SdcaModel optimizer.