Maps a sequence of symbols to a vector per example by averaging embeddings.
tf.contrib.layers.bow_encoder(
ids, vocab_size, embed_dim, sparse_lookup=True, initializer=None,
regularizer=None, trainable=True, scope=None, reuse=None
)
Args |
ids
|
[batch_size, doc_length] Tensor or SparseTensor of type
int32 or int64 with symbol ids.
|
vocab_size
|
Integer number of symbols in vocabulary.
|
embed_dim
|
Integer number of dimensions for embedding matrix.
|
sparse_lookup
|
bool , if True , converts ids to a SparseTensor
and performs a sparse embedding lookup. This is usually faster,
but not desirable if padding tokens should have an embedding. Empty rows
are assigned a special embedding.
|
initializer
|
An initializer for the embeddings, if None default for
current scope is used.
|
regularizer
|
Optional regularizer for the embeddings.
|
trainable
|
If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
|
scope
|
Optional string specifying the variable scope for the op, required
if reuse=True .
|
reuse
|
If True , variables inside the op will be reused.
|
Returns |
Encoding Tensor [batch_size, embed_dim] produced by
averaging embeddings.
|
Raises |
ValueError
|
If embed_dim or vocab_size are not specified.
|