View source on GitHub |
Returns a function which differentiates f with respect to variables.
tf.contrib.eager.implicit_gradients(
f
)
The wrapped function returns the gradient of f when called with the same
arguments. The gradient is with respect to all trainable TFE variables
accessed by f
.
This function is useful when the exact set of variables to differentiate with is not known ahead of time.
Example:
dense_layer = tf.compat.v1.layers.Dense(1)
def loss(x, y):
return tf.reduce_sum(tf.square(dense_layer(x) - y))
# Obtain the gradient function.
grad_fn = tfe.implicit_gradients(loss)
# Invoke the gradient function with concrete values of x and y.
x = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
y = tf.constant([[10.0], [20.0]])
grads_and_vars = grad_fn(x, y)
# Apply the gradients to Variables.
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1)
optimizer.apply_gradients(grads_and_vars)
Args | |
---|---|
f
|
function to be differentiated. If f returns a scalar, this scalar will
be differentiated. If f returns a tensor or list of tensors, by default
a scalar will be computed by adding all their values to produce a single
scalar.
|
Returns | |
---|---|
A function which, when called, returns a list of (gradient, variable) pairs. |