tensoreflusso:: ops:: SparseApplyFtrl

#include <training_ops.h>

Aggiorna le voci rilevanti in '*var' secondo lo schema Ftrl-prossimale.

Riepilogo

Questo è per le righe per le quali abbiamo grad, aggiorniamo var, accum e linear come segue: $$accum_new = accum + grad * grad$$ $$linear += grad + (accum_{new}^{-lr_{power}} - accum^{-lr_{power}} / lr * var$$ $$quadratic = 1.0 / (accum_{new}^{lr_{power}} * lr) + 2 * l2$$ $$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$ $$accum = accum_{new}$$

Argomenti:

  • scope: un oggetto Scope
  • var: dovrebbe provenire da una variabile().
  • accum: dovrebbe provenire da una variabile().
  • lineare: dovrebbe provenire da una variabile().
  • grad: il gradiente.
  • indici: un vettore di indici nella prima dimensione di var e accum.
  • lr: fattore di scala. Deve essere uno scalare.
  • l1: regolarizzazione L1. Deve essere uno scalare.
  • l2: regolarizzazione L2. Deve essere uno scalare.
  • lr_power: fattore di scala. Deve essere uno scalare.

Attributi facoltativi (vedi Attrs ):

  • use_locking: Se True , l'aggiornamento dei tensori var e accum sarà protetto da un lock; altrimenti il ​​comportamento non è definito, ma può mostrare meno contesa.

Resi:

Costruttori e distruttori

SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power)
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs)

Attributi pubblici

operation
out

Funzioni pubbliche

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Funzioni pubbliche statiche

UseLocking (bool x)

Strutture

tensorflow:: ops:: SparseApplyFtrl:: Attrs

Setter di attributi facoltativi per SparseApplyFtrl .

Attributi pubblici

operazione

Operation operation

fuori

::tensorflow::Output out

Funzioni pubbliche

SparseApplyFtrl

 SparseApplyFtrl(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input lr_power
)

SparseApplyFtrl

 SparseApplyFtrl(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input lr_power,
  const SparseApplyFtrl::Attrs & attrs
)

nodo

::tensorflow::Node * node() const 

operatore::tensorflow::Input

 operator::tensorflow::Input() const 

operatore::tensorflow::Output

 operator::tensorflow::Output() const 

Funzioni pubbliche statiche

UsaLocking

Attrs UseLocking(
  bool x
)